Corrections and Further Explanations for Statistics and Data Analysis of Financial Engineering
 Last updated: March 23, 2015

- Page 11, displayed line: "Stock_bond.xsv" should be "Stock_FX_bond.csv".
- Page 12, Problem 2: The question mark at the end of the first sentence should be a period.
- Page 13, line -9: "stayed between $\$ 950,000$ and $\$ 1,000,000$ " should be "stayed between $\$ 950,000$ and $\$ 1,100,000$ "
- Page 14, Exercise 3: "price" should be "prices".
- Page 14: Exercise 5 (c) should be "What is the covariance between $r_{2}(1)$ and $r_{2}(2)$?
- Page 26, first displayed equation in Example 3.3:"993.40" should be "943.40."
- Page 36 and elsewhere throughout the book: fEcof in package: At the time the book was written f Ecof in was available on CRAN. However, fEcofin is no available longer on CRAN. I was able to install it using install. packages("fEcofin", repos="http: //R-Forge.R-project.org", type="source").
- Page 37, problem 7 (c):" $\$ 828$ " should be " $\$ 818$ ".
- Page 38: 7th line in problem 12: "0.03" should be "0.036".
- Page 41, line - 2: "random" should be "randomly".
- Page 51, line - 10: "replaced by the medium" should be "replaced by the median"
- Page 60, 1st paragraph: The description of the Shapiro-Wilk test contains some inaccuracies. First, the test uses the expected normal order statistics, not $\Phi^{-1}\{i /(n+1)\}$, though the former are approximately equal to the latter in large samples. Moreover, in the Shapiro-Wilk test, the vector of expected order statistics is multiplied by the inverse of its covariance matrix. The test is based on the correlation between this product and the $Y_{(i)}$ (the sample order statistics).
- Page 77, Exercise 1 (d): "choice" should be "choices".
- Page 96: "F-N skewed distribution" should be "F-S skewed distribution".
- Examples 5.4-5.6 on pages 106-109:
stdFit and gedFit use the nlminb optimizer while sstdFit uses the nlm optimizer. No optimizer is guaranteed to find the global optimum. I sometimes use the optim function for optimization. The following example shows how to fit the standardized t-model with optim. Using optim requires somewhat more work since the user needs to supply a function that computes minus the log-likelihood. However, as seen here, that can often be done with a single line of code. Minus the log-likelihood is used because, by default, optim minimizes the objective function. However, optim will maximize the objective function if the control parameter fnscale is negative (see the documentation); in this case, the objective function should be the log-likelihood.

Some R functions that compute densities, e.g., dt() , have the option to return the log-density. If available, this option should be used since it is more numerically stable than computing the density and then applying the $\log ()$ function. However, this option is not available with dstd() and so is not used in this example.

```
library(fGarch)
library(MASS)
data(Capm,package="Ecdat")
diffrf=diff(Capm$rf)
n = length(diffrf)
start=c(mean(diffrf),sd(diffrf),4)
fit_std = optim(start,fn=function(theta)
    { -sum(log(dstd(diffrf,theta[1],theta[2],theta[3]))) },
        method="L-BFGS-B",lower=c(-1,.03,2.5) )
fit_std
```

- Page 126, Problem 8: "Sections 2.8 and 3.16 of the lecture notes" should be "Section 4.8 " and "Problem 1" should be "Problem 6".
- Page 128: "F-N skewed distribution" should be "F-S skewed distribution".
- Page 144, lines 4-5: "quantKurt" should be "quKurt".
- Page 146, Problem 2: Use $p_{1}=0.025$ and $p_{2}=0.25$. (This is suggested by the text immediately before the problem, but should be explicit.)
- Page 154, line 3: "Let \boldsymbol{W} be a nonrandom $N \times q$ matrix" should be "Let \boldsymbol{W} be a nonrandom $d \times q$ matrix"
- Page 158, lines 3-4: "Extreme values of \boldsymbol{Z} tend to occur when W is near zero." should be "Extreme values of \boldsymbol{Y} tend to occur when W is near zero."
- Page 160, line -6 : AIC is 15.42 , not 7.42.
- Page 161, line $-6: \nu$ was fixed at 6 , not 5.94.
- Pages 164-5, Example 7.5: The estimates given here are incorrect, because the algorithm did not converge. By using non-default values of the control parameters, specifically eval. $\max =1000$ and iter. $\max =500$ which are larger than the defaults, the following estimates are obtained:

```
$beta
\begin{tabular}{rrrr} 
ge & ibm mobil crsp
\end{tabular}
[1,] -0.001233907 -0.001855562 -0.0004461505 0.001050890
$Omega
\begin{tabular}{lrrrrr} 
& ge & ibm & mobil & crsp \\
ge & \(1.289738 \mathrm{e}-04\) & \(5.219954 \mathrm{e}-05\) & \(3.604621 \mathrm{e}-05\) & \(4.512069 \mathrm{e}-05\) \\
ibm & \(5.219954 \mathrm{e}-05\) & \(1.860970 \mathrm{e}-04\) & \(2.491078 \mathrm{e}-05\) & \(3.756661 \mathrm{e}-05\) \\
mobil & \(3.604621 \mathrm{e}-05\) & \(2.491078 \mathrm{e}-05\) & \(1.163636 \mathrm{e}-04\) & \(2.754968 \mathrm{e}-05\)
\end{tabular}
```

```
crsp 4.512069e-05 3.756661e-05 2.754968e-05 3.657415e-05
```

\$alpha

ge	ibm	mobil	crsp
0.4976872	0.3058549	0.2024128	-0.6142384

\$df
[1] 5.915498

Also, AIC was not computed correctly both because the algorithm did not converge and because the number of parameters was miscounted. AIC should be 5.33 plus 64,000 , which is smaller, not larger, than the symmetric t-model. Therefore, AIC favors the skewed t. However, BIC is 116.2 for the skewed t-model and only 102.9 for the symmetric t-model, so BIC favors the symmetric t. There is not a lot of skewness in this data set (see Figure 7.1), and the symmetric t-model seems reasonable to me.

- Page 165, Caption to Fig. 7.7: "because X_{2} is left-skewed" should be "because X_{2} is right-skewed"
- Page 171, line 2: "three bivariate samples" should be "four bivariates samples."
- Page 186, equation (8.23)

$$
2+\lim _{q \Uparrow 1} \frac{1-C_{Y}(q, q)}{1-q} .
$$

should be

$$
2-\lim _{q \Uparrow 1} \frac{1-C_{Y}(q, q)}{1-q} .
$$

- Page 196, problem 2 (c): "effects of correlation" should be "effects of independence".
- Page 198: There have been changes in fitCopula since this material was written. In particular, "method" is now "optim.method." Immediately before Problem 5 make the following changes.

```
ft1 = fitCopula(cop_t_dim2, data1, optim.method="L-BFGS-B", method="ml",
    start=c(omega,5),lower=c (0,2.5),upper=c(.5,15) )
ft2 = fitCopula(cop_t_dim2,data2, optim.method="L-BFGS-B", method="ml",
    start=c(omega,5),lower=c (0,2.5),upper=c(.5,15))
```

- Page 199: Because of changes in fitCopula, replace the R code on this page by:

```
fnorm = fitCopula(data=data1,copula=normalCopula(-.3,dim=2),method="mpl",
    optim.method="BFGS",start=.5)
fgumbel = fitCopula(data=data1,optim.method="BFGS",method="mpl",
    copula=gumbelCopula(3,dim=2))
ffrank = fitCopula(data=data1,optim.method="BFGS",method="mpl",
    copula=frankCopula(3,dim=2), start=1)
fclayton = fitCopula(data=data1,optim.method="BFGS",method="mpl",
    copula=claytonCopula(1,dim=2),start=1)
```

and

```
u1 = data1[,1]
u2 = data1[,2]
dem = pempiricalCopula(u1,u2)
par(mfrow=c(3,2))
contour(dem$x,dem$y,dem$z,main="Empirical")
contour(tCopula(param=ft2@estimate[1],df=ft2@estimate[2]),
    pcopula,main="t")
contour(normalCopula(fnorm@estimate),pcopula,main="Normal")
contour(gumbelCopula(fgumbel@estimate,dim=2),pcopula,
    main="Gumbel")
contour(frankCopula(ffrank@estimate,dim=2),pcopula,main="Frank")
contour(claytonCopula(fclayton@estimate,dim=2), pcopula,
    main="Clayton")
```

- Page 200: Because of changes in fitCopula, replace the R code on this page by:

```
par(mfrow=c(3,2))
contour(kde2d(u1,u2),main="KDE")
contour(tCopula(param=ft2@estimate[1],df=ft2@estimate[2]),
    dcopula,main="t",nlevels=25)
contour(normalCopula(fnorm@estimate), dcopula,
        main="Normal",nlevels=25)
contour(gumbelCopula(fgumbel@estimate,dim=2),
        dcopula,main="Gumbel",nlevels=25)
contour(frankCopula(ffrank@estimate,dim=2),
        dcopula,main="Frank",nlevels=25)
contour(claytonCopula(fclayton@estimate,dim=2),
        dcopula,main="Clayton",nlevels=25)
```

- page 202, second paragraph, third line: "For example, if the process is stationary" should be "For example, if the process is weakly stationary".
- page 206, first line in Section 9.3: "stationary" should be "weakly stationary".
- page 206, subsection 9.3.1, last sentence of second paragraph: $\rho(1)=\rho(2)=\cdots=$ $\rho(K)$ should be $\rho(1), \rho(2), \cdots, \rho(K)$.
- page 208, second paragraph of Section 9.4: In the first line, "WN $\left(0, \sigma_{\epsilon}^{2}\right)$ " should be "weak $\mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ ". Later in this paragraph " Y_{t} is $\mathrm{WN}\left(\mu, \sigma_{\epsilon}^{2}\right)$ " should be " Y_{t} is weak $\mathrm{WN}\left(\mu, \sigma_{\epsilon}^{2}\right) "$
- page 209, first line in Section 9.4.1: "stationary" should be "weakly stationary".
- page 213, line 2: "They similar" should be "They are similar".
- Page 218, equation (9.18):

$$
\begin{equation*}
\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}^{n}}\right) \exp \left\{-\frac{\left(Y_{1}-\mu\right)^{2}}{2 \sigma_{\epsilon}^{2}\left(1-\phi^{2}\right)}\right\} \prod_{i=2}^{n} \exp \left(-\frac{\left[Y_{i}-\left\{\mu+\phi\left(Y_{i-1}-\mu\right)\right\}\right]^{2}}{2 \sigma_{\epsilon}^{2}}\right) \tag{1}
\end{equation*}
$$

should be

$$
\begin{equation*}
\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} \sqrt{1-\phi^{2}} \exp \left\{-\frac{\left(Y_{1}-\mu\right)^{2}}{2 \sigma_{\epsilon}^{2} /\left(1-\phi^{2}\right)}\right\} \prod_{i=2}^{n} \exp \left(-\frac{\left[Y_{i}-\left\{\mu+\phi\left(Y_{i-1}-\mu\right)\right\}\right]^{2}}{2 \sigma_{\epsilon}^{2}}\right) \tag{2}
\end{equation*}
$$

- Page 218, equation (9.19):

$$
\begin{equation*}
\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}^{n}}\right) \tag{3}
\end{equation*}
$$

should be

- Page 218, equation (9.19):

$$
\begin{equation*}
\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} \tag{4}
\end{equation*}
$$

- page 219, line 8: "WN $\left(0, \sigma_{\epsilon}^{2}\right)$ " should be "weak $\mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ ".
- page 223 , line after equation (9.21): "WN $\left(0, \sigma_{\epsilon}^{2}\right)$ " should be "weak $\mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$ ".
- page 224, line 3: "armaACF" should ber "ARMAacf".
- Page 229, equation (9.34):

$$
w_{t}=w_{t_{0}}+Y_{t_{0}}+Y_{t_{0}+1}+\cdots+Y_{t}
$$

should be

$$
w_{t}=w_{t_{0}}+Y_{t_{0}+1}+\cdots+Y_{t} .
$$

- Page 229, (9.35): The derivation of this equation is

$$
\Delta w_{t}=w_{t}-w_{t-1}=\left(w_{t_{0}}+Y_{t_{0}+1}+\cdots+Y_{t}\right)-\left(w_{t_{0}}+Y_{t_{0}+1}+\cdots+Y_{t-1}\right)=Y_{t} .
$$

- Page 232 , last two lines: Δ^{2} should be Δ^{d}.
- Page 233, (9.37): $1-\phi_{1} x-\cdots-\phi_{k} x^{k}$ should be $1-\phi_{1} x-\cdots-\phi_{p} x^{p}$. (Change k to p.)
- Page 238: " $-\theta$ " should be " θ " (six times) to be consistent with earlier notation for MA processes. (Notation for MA process varies between books and software, but we will use the notation introduced in Section 9.7.)
- Page 250, line -3 : The mean of the residuals is nearly, but not exactly, equal to 0 . The residuals can be mean-centered by replacing resid2 = residuals(fit1)^2 by resid2 $=($ fit1\$residual - mean(fit1\$residual))^2. However, doing this has no noticeably effect on the ACF plot and the p-value of the Box-Ljung test is changed only very slightly.
- Page 251: Add the following to the R script after the first line of code:

```
dat = as.data.frame(Tbrate)
attach(dat)
library(forecast)
```

- Page 251, problem 7 (b): More accurately, the predictions do not "wiggle" but rather decay to zero.
- Page 252, exercise 2: "AR (p)" should be "AR (2)".
- Page 258, line - 11: "first -rder" should be "first-order"
- Page 260, equation (10.4) and six lines below this equation: " $\theta_{q_{s}}$ " should be " $\theta_{q_{s}}^{*}$ "
- Page 261, Figure 10.3: The x-axis is mislabel. The plot should be:

- Page 265, line 1: "at positive lags" should be "at negative lags"
- page 266 , line after equation (10.7): "WN $(0, \boldsymbol{\Sigma})$ " should be "weak $\mathrm{WN}(0, \boldsymbol{\Sigma})$ ".
- Page 280, line -11: "ARIMA(2,0,0)" should be "ARIMA(2,1,0)".
- Page 303, 1st line of Example 11.10: "shrinkage estimation" should be "prohibiting short sales"
- Page 308: Exercise 6 should not ask for the one-week $\operatorname{VaR}(0.05)$, since Value-at-Risk in not covered until Chapter 19.
- Page 317, formula for the quadratic regression model with two predictors: " $\beta_{2} X_{i, 2}^{2}$ " should be " $\beta_{2} X_{i, 1}^{2}$ ".
- Page 336, code before Problem 1: Change this code to the following:

```
library(AER)
data("USMacroG")
MacroDiff=as.data.frame(apply(USMacroG,2,diff))
attach(MacroDiff)
pairs(cbind(consumption,dpi,cpi,government,unemp))
```

- Page 337, code after problem 6 and elsewhere: "cr.plot" should be changed throughtout to "crPlot" because "cr.plot" has been deprecated and may not work with newer versions of R. (However, "cr.plot" works with version 3.0.0 of R although it results in a warning.)
- Page 351, 2nd line in 2nd paragraph: "catterplot" should be "scatterplot".
- Page 374, second line in Example 14.2: "WN $\left(0, \sigma_{u}^{2}\right)$ " should be "weak $\mathrm{WN}\left(0, \sigma_{u}^{2}\right)$ ".
- Page 416, line 7: " $E\left\{\Delta\left(Y_{1, t}-\lambda Y_{2, t}\right) \mid \mathcal{F}_{t}\right\}$ " should be " $E\left\{\Delta\left(Y_{1, t}-\lambda Y_{2, t}\right) \mid \mathcal{F}_{t-1}\right\}$ ".
- Page 416, fourth line before Example 15.2: $\phi_{1}-\lambda \phi_{2}<-2$ should be $\phi_{1}-\lambda \phi_{2} \leq-2$.
- Page 417, line 1: "so that \boldsymbol{Y}_{t} and $\boldsymbol{\epsilon}_{t}$ " should be "so that \boldsymbol{Y}_{t} and $\boldsymbol{\epsilon}_{t}$ are"
- Page 437, second displayed line in Section 16.7 " $\sigma_{\epsilon j}^{2}$ " should be " $\sigma_{\epsilon, j}^{2}$ ".
- Throughout chapter 17: "Small minus large" and "SML" should be "Small minus big" and "SMB".
- Page 456, line 2: "large stock" should be "large stocks".
- Page 457, line 16: "GE behaves as a value stock" should be "GE behaves as a growth stock"
- Page 467: Replace
"Therefore, to determine $\boldsymbol{\beta}$ a further set of constraints is needed. One set of constraints in common usage, that is, by the function factanal in R, is that $\boldsymbol{\beta} \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1} \boldsymbol{\beta}^{\top}$ is diagonal." by
"Therefore, to determine $\boldsymbol{\beta}$ a further set of constraints is needed. One possible set of constraints is that $\boldsymbol{\beta} \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}^{-1} \boldsymbol{\beta}^{\boldsymbol{\top}}$ is diagonal (Mardia et al., 1979, p. 258). I have been unable to determine the constraints used by R's function factanal. "
- Page 470: Add to Section 17.7 "The yields.txt data set is from the Rsafd package distributed by Professor René Carmona.
- Page 470: Add to references

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979) Multivariate Analysis, Academic Press, London.

- Page 472, 2nd line after Problem 3: "default,princomp" should be "default, princomp" (insert a space after "default")
- Page 475, 2nd line in Section 17.9.3:"costing" should be "closing".
- Page 475, Problem 15: "Regardless of your answer to Problem 6" should be "Regardless of your answer to Problem 14".
- Page 479 , second line after (18.4): " α_{0} " should be " ω ".
- Page 480, equation (18.6): " α_{0} " should be " ω ".
- Page 482, last line before Example 18.2: "nonconstan" should be "nonconstant".
- Pages 482 and 483: "ARCH (q) " should be " $\operatorname{ARCH}(p)$ " throughout Sections 18.5 and 18.6.
- Page 489, line 6: "Assume that $p \leq q$ " should be "Assume that $p \geq q$ " and after the sentence containing this string, add the sentence "If $p>q$ then define $\beta_{i}=0$ for $i=q+1, \ldots, p$."
- Page 491, equation (18.17): " $a_{t-1} "$ should be " a_{t-i} " (twice).
- Page 502 , problems 3 and 4 : "WN $(0,1)$ " should be "i.i.d. $\mathrm{WN}(0,1)$ ".
- Page 525

$$
0.96 \Phi(x ; 2000,4)+0.04 \Phi(x ;-100,4),
$$

should be

$$
0.04 \Phi(x ; 2000,4)+0.96 \Phi(x ;-100,4)
$$

and

$$
0.96^{2} \Phi(x ; 2000,2)+2(0.96)(0.04) \Phi(x ; 950,2)+0.04^{2} \Phi(x ;-100,2) .
$$

should be

$$
0.04^{2} \Phi(x ; 2000,2)+2(0.96)(0.04) \Phi(x ; 950,2)+0.96^{2} \Phi(x ;-100,2) .
$$

- Page 528, Exercise 1: Add "Assume that an investor owns $\$ 1000$ in BMW stock."
- Page 528, Exercise 4: Add "Assume that an investor owns $\$ 1000$ in MSFT stock."
- Page 543, Theorem 20.6: "Fisher information" should be "Fisher information matrix"
- Page 565 (bottom) and 566 (top): The MLE of the correlation matrix is incorrect and should be

```
$cor
```

```
        [,1] [,2] [,3] [,4]
```

 [,1] [,2] [,3] [,4]
 [1,] 1.0000 0.3192 0.2845 0.6765
[1,] 1.0000 0.3192 0.2845 0.6765
[2,] 0.3192 1.0000 0.1584 0.4698
[2,] 0.3192 1.0000 0.1584 0.4698
[3,] 0.2845 0.1584 1.0000 0.4301
[3,] 0.2845 0.1584 1.0000 0.4301
[4,] 0.6765 0.4698 0.4301 1.0000

```
[4,] 0.6765 0.4698 0.4301 1.0000
```

- Page 612, second line in the paragraph before Section A.13.1: " $E(Y \mid X)=E(X)$ " should be " $E(Y \mid X)=E(Y)$ ".
- Page 621, second line after (A.49): $\boldsymbol{O o}_{k}^{\top}$ should be $\boldsymbol{O}^{\top} \boldsymbol{o}_{k}$.
- Page 628: "F-N skewed distribution" should be "F-S skewed distribution".

