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PARTIALLY-FINITE PROGRAMMING IN L, AND THE EXISTENCE OF
MAXIMUM ENTROPY ESTIMATES*

J. M. BORWEINY{ AND A. S. LEWISY

Abstract. Best entropy estimation is a technique that has been widely applied in many areas of science.
It consists of estimating an unknown density from some of its moments by maximizing some measure of
the entropy of the estimate. This problem can be modelled as a partially-finite convex program, with an
integrable function as the variable. A complete duality and existence theory is developed for this problem
and for an associated extended problem which allows singular, measure-theoretic solutions. This theory
explains the appearance of singular components observed in the literature when the Burg entropy is used.
It also provides a unified treatment of existence conditions when the Burg, Boltzmann-Shannon, or some
other entropy is used as the objective. Some examples are discussed.
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1. Introduction: Best entropy estimation. A very common problem in many areas
of the physical sciences consists of trying to estimate an unknown density by measuring
some of its moments. More precisely, given a number of integrals of an unknown
function with respect to known weight functions, and a real interval in which the
function is known to take its values, we seek to estimate the function. Typically, the
weight functions are trigonometric polynomials, frequently multidimensional (so the
given moments are Fourier coefficients), or algebraic polynomials (giving power
moments), and the given interval is often (though not exclusively) the nonnegative reals.

Given only a finite number of moments this estimation problem is clearly under-
determined. One extremely popular method for selecting an estimate from the family
of all functions satisfying the prescribed moment constraints is to choose it to minimize
some objective functional (subject to the given constraints). This objective is typically
some measure of entropy—hence the term ““best entropy estimation.” This approach
has been widely and successfully used in such diverse areas as astronomy, crystallogra-
phy, speech processing, tomography, geophysics, and many others. For surveys, see
[31] and [35] (containing in total almost 700 references), and the recent collections,
[54], [53], [17], and [51].

Phrased mathematically, the best entropy estimation problem becomes, in its
simplest form,

minimize j d(x(s))
(1.1)
subject to j ax=>b, fori=1,...,n

The variable density to be chosen is x, the a;’s are the known weight functions, and
the b;’s are the measured moments. The function ¢ reflects our choice of entropy: it
may take the value + 0 to incorporate the known range constraint on x. For reasons
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discussed in [6] we may as well restrict ourselves to closed, proper, convex functions
¢. The two classical choices correspond to the Boltzmann-Shannon entropy, perhaps
first suggested in this context in [27],

ulogu ifu>0,
(1.2) H(u)=1{0 ifu=0,
+00 if u <0,

and the Burg entropy, first proposed in [12],

—logu ifu>0,
1. =
(1.3) ¢(u) {o ifu=0,

although numerous other entropies have appeared in the literature, including L, and
L, entropies [25],[29], and [3], and the general families proposed in [40], [39], and [13].

The debate over the relative merits of the various entropies has been intense, as
the above references will testify. The choice between (1.2) and (1.3) has been particularly
controversial (see, for example, [28] and [52]). The issues in this debate can be grouped
into three rather distinct areas. The first might be termed a priori reasons for selecting
a particular entropy, generally involving a probabilistic, statistical, or information-
theoretic discussion of the underlying phenomenon we seek to measure (see for
example, [40], [52], [28], [39], and [13]). The second area of debate is empirical: the
performance of the method is judged by its ability to reconstruct a known density from
its moments (see, for example, [40], [28], [52], and [29]). Both of these areas lie outside
our current scope.

The third area might be called a posteriori reasons: mathematical properties of
the estimates arising from a particular choice of entropy are studied. Two particular
properties have attracted attention: the existence of the optimal estimates, and their
convergence to the underlying density as the number of given moments grows. For
questions of convergence, see [52], [37], [22], [50], [18], [34], [19], [13], [7], [5], and
[11]. In this paper we shall concentrate on the first property: the existence of an optimal
solution for the estimation problem (1.1).

The basic idea for solving (1.1) has been explained widely in the applied literature,
although for the most part without any degree of rigour: the form of the optimal
solution is derived by attaching Lagrange multipliers A4, ..., A, to the constraints, and
then differentiating (formally), giving

(14) %(s)= (qs')-l(‘é Aiai(s)),

where the A;’s are chosen to ensure that X is feasible. Two existence questions need
to be addressed to make this rigorous. First, when do the multipliers A,, ..., A, exist?
Put differently, we require the existence of an optimal solution to the dual problem
for (1.1). As usual in convex programming, the required condition is a primal constraint
qualification for (1.1). This is straightforward to check: a general theory for “partially-
finite programs” (convex programs with an infinite-dimensional variable subject to a
finite number of linear constraints) is developed in [9] and [6].

The second question is more delicate: when does (1.4) give the optimal solution?
Under mild conditions, it does so provided that we know a priori that an optimal
solution exists. This is the case, for example, when the objective function has weakly
compact level sets, as is the case with the Boltzmann-Shannon entropy [7], but the
important case of the Burg entropy is not covered by this idea. Existence was shown
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for important special cases in [15] and [56], and a general condition ensuring existence
was introduced in [32] together with a demonstration that it may fail in general.

A fascinating concrete example of the nonexistence of a best Burg entropy estimate
appeared in [40] (see also [52] and [14]). The problem was very simple: the unknown
function was a probability density on the unit cube in R?, with three of its (multi-
dimensional) Fourier coefficients given equal to a parameter « in [0, 1). It turns out
that the Lagrange multipliers always exist, and, at least for small «, (1.4) gives the
correct best Burg entropy estimate. However, as « increases to a certain critical value
the solution becomes more and more concentrated, and beyond this value (1.4) fails
to give even a feasible estimate.

The explanation given in the above papers in a self-professed nonrigorous fashion
is that part of the real solution has condensed to a point mass, a claim also supported
by considering discretized versions of the problem. The initial motivation of this work
is to give a rigorous explanation of this phenomenon. In the course of this explanation
we will develop a rather general duality and existence theory for the problem (1.1).

If, as the above example suggests, we should accept the possibility of measure-
theoretic solutions to (1.1), then the question arises of how to reformulate the objective
function. The constraints give no difficulty providing the a;’s are continuous, and the
case where ¢ is piecewise linear and continuous is also clear—there is a strong analogy
with semi-infinite linear programming, where point-mass solutions are familiar (see,
for example, [1]).

The correct approach in the general case turns out to be to replace the objective
function in (1.1) by what is essentially its second conjugate, which becomes a functional
defined on measures. This idea is not in itself particularly new: see, for example, the
discussion of ‘“‘generalized solutions” in [16] and [47]. What is more remarkable is
the simplicity and tractability of the resulting problem. In the first three sections of
this work, relying heavily on the work of Rockafellar [43]-[47], we derive this extended
primal problem, and investigate its relationship with the original primal and dual
problems.

The next section returns to the underlying question of the existence of an optimal
solution for the original problem (1.1). Using the extended solutions, we provide a
general theory linking the boundary behaviour of the entropy and the local geometry
of the underlying measure space with the existence question. This provides a unified
and illuminating explanation of previous results in the literature [15], [56], [32], [6].
The last section discusses how extended solutions can be computed, and ends with
some examples including a resolution of the example described above.

Just prior to submitting this article for publication, the authors became aware of
recent unpublished work [20], [21] on some similar questions. The approach therein
is very different from the purely convex analytic attack employed here. It relies on
discretization and a Bayesian statistical interpretation, which lead to the application
of large deviation theory (building on results in [13]). This probabilistic method, while
seemingly less constructive than the convex programming approach, suggests intriguing
connections between the two.

Problem (1.1) is a very general partially-finite program. As such, it models very
many problems other than best entropy estimation. In particular, as outlined in [9],
it includes numerous examples from constrained approximation, interpolation, and
smoothing (see, for example, [38], [26], and [10]); the duality theory developed here
also applies to some of these problems. The theory in this paper also allows an arbitrary
linear functional to be added to the objective function. There has been recent interest
in log-barrier penalty methods for semi-infinite linear programming, in the context of
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the asymptotic behaviour of Karmarkar’s method [42], [55], and our results may be
applied here.

In the interests of economy, many reasonably routine computations and proofs
are omitted; they can be found in [8] and [33].

2. Preliminaries. The measures of entropy with which we shall be concerned are
integral functionals of the form | ¢(x(s)), where ¢ :R - (—00, +00] is a closed, proper,
convex function. We shall use the notation and terminology of [45] throughout. The
conjugate function is denoted by ¢*, and the recession function ¢0+ :R-> (—00, +00]
is given by (¢0+)(u) =1im,_, 10 (1/A)d(uo+ Au), where u, is arbitrary in the domain
of ¢ (see [45, Thm. 8.5]). The following result defines the constants p and g, which
will be crucial in this paper. (These are entirely unrelated to the notation for the spaces
L, and L,.) The proof is standard (see [8, Lemma 2.2]).

LEMMA 2.1. The following limits exist:
gi=lim, o0 (u)/u € (00, +00],
2.2) . '
p = hmu—)—oo ¢(u)/u € [—OO, +OO).

Furthermore, p = q,

qu ifu>0,
(2.3) (60+)(w)=40  ifu=0,
pu ifu<o,

and int (dom (¢*)) = (p, q). The function ¢ is affine if and only if p=q (s0 dom (¢*) =
{p}.

Lemma 2.1 characterizes dom (¢*). It will also be helpful to have some notation
for dom (¢), so define B in (—o0,+o] as sup (dom ¢) and « in [—o0, +00) as
inf (dom ¢), so int (dom (¢)) = (e, B). The ideas of essential strict convexity and essen-
tial smoothness [45] will be useful to us. These concepts are particularly simple for
univariate functions. We have that ¢ is essentially strictly convex (or, equivalently, ¢
is strictly convex on dom (¢)) if and only if ¢* is essentially smooth. This in turn is
equivalent to p < q and ¢* differentiable on (p, q) with lim,, (¢*)'(v) = —0if p > —00,
and lim,, (¢*)'(v) =+ if g < +c0. In this case,

(2.4) a¢*<v)={{("’ Y(v)} ifve(p,q),

1] otherwise.

One particularly well behaved class of convex functions is that of Legendre type
[45].

DEFINITION 2.5. We say ¢ is of Legendre type if it is essentially smooth and
essentially strictly convex.

LEMMA 2.6. Suppose ¢ is of Legendre type. Then, so is ¢*, and ¢':(a, B)~>
(p, 9), (6*) :(p, q) > (e, B) are continuous, strictly increasing, and mutually inverse maps
between the interiors of the domains of ¢ and ¢*. Also, ¢ <+ if and only if B =+
and p> —o if and only if a = —0.

Proof. See [45, Thm. 26.5]. The last part is immediate. a

We will use the notation, for u in R, u* = max {y, 0}, and u~ = —min {u, 0}, so
u=u"—u" and |u|=u"+u". If we adopt the convention that () 0=0, we can
rewrite (2.3) as (¢p0+)(u)=qu* —pu".

The results in this paper will revolve around the computation of the conjugates
and subdifferentials of various convex integral functions. We will rely heavily on the
ideas and results of Rockafellar [45], [46]. For convenience, we will summarize the
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notation to be used throughout the paper before proving the technical results that will
be applied.

S is a compact Hausdorff space, with z,€ C(S), the Banach space of continuous
functions on S. Furthermore, 0= p € M (S), the Banach space of regular Borel measures
on S, and p has full support [48]. I,:L,(S, p)->(—,+] is defined by I,(x):=
fs ¢(x(s)) dp, and I«: L. (S, p)->(—,+o0] is defined by I+(z)= js &*(z(s)) dp.
Jyx: C(S) = (—0, +0] is defined as the restriction of I« to C(S). We have beR", and
a=(ay,...,a,)€(C(S))". The map A:L(S,p)>R" is defined by (Ax);=
Is a,(s)x(s) dp for i=1,..., n. Finally, B:R" > C(S) is defined by BA:=\"a.

Some comments are in order concerning these definitions. We will often treat
C(S) with its usual supremum norm as a subspace of L(S, p). We can regard M(S),
with its usual norm, as the dual of C(S). The continuous linear map A has adjoint
A*:R" > L(S, p), which may be identified with the continuous linear map B, as is
easily checked. Also, B¥: M(S)~>R" is continuous and given by (B*p), = | a; dp. For
the relevant ideas, see, for example, [48] and [49].

The function ¢ is a normal convex integrand, so the integral functional I, is a
well-defined, convex, lower semicontinuous function, with conjugate I« [46]. The
function J,« is also well defined and convex (see, for example, [47, Thm. 3]). Much
of this section will be devoted to studying its conjugate.

We will write, for any u in M(S), u=u"—pu~ for the Jordan decomposition,
M= u,+ u, for the Lebesgue decomposition with respect to p (so u, < p and u, L p),
and (du,/dp) e L,(S, p) for the Radon-Nikodym derivative [48].

THEOREM 2.7. The function J,« is well defined, lower semicontinuous, and convex.
It is continuous on the set {ze C(S)|z(s)e (p, q) for all se S}. The conjugate function
JEe: M(S) - (—00, +00] is given by

(2.8) To+(w) =J

¢ (‘;““ (S)) dp + qus(S) — pu(S).
s P
The proof of this result in the affine case is a straightforward calculation, while
the case p <gq is a direct application of [46, Thm. 5] (see also [8, Thm. 3.1]).
COROLLARY 2.9. Suppose x€ L\(S, p) and 0=v, £ M(S). If du=xdp+dv—d¢
then J%:«(u) = I,(x) + qv(S) — p£(S) with equality if p, v, and ¢ are mutually singular.
Proof. Let y==v—¢ Then v=y" and £= vy~ (see [48, p. 127]). By Theorem 2.7
and the definition of ¢0+,

dy, . _
Tp(p)= L ¢ (x(S)+% (S)) dp+qy5(S)—py(S)

= L [¢(x(s))+(¢0+) (% (s))] dp+qyi(S)—py:(S)

dy dv; N _
[q—d%(s)—p d’p (s)] dp+qvi(S) - pya(S)

=1I,(x) +J

=1,(x)+ qya(S) —pya(S) + gv5(S) — py(S)
=L, (x)+qy"(S)-py(S)
=L(x)+p(v(S)—£&(8))+(g—p)v(S).

If p, v, and ¢ are mutually singular, then vy, =0, so dy,/dp(s) =0 almost everywhere,
[p] on S, and »=y" (by Hahn decomposition), so we have equality above. 0
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We now compute the subdifferential of J,«. This will be fundamental in deriving
optimality conditions.

THEOREM 2.10. Suppose z€ C(S) and € M(S). Then u € 3J4+(z) (or equivalently,
Jy+(2)+ T5(u) =[5 2(s) du) if and only if

z(s)elp,q] forallsesS,

P () cop*(2(s) ae[p]ons,
dp

support (uy) < {s|z(s) = q},

and

support (u;) < {s|z(s) = p}.

Proof. We will assume that ¢ is not affine: the affine case, like Theorem 2.7, is a
straightforward calculation, and we will not use this case in what follows. We assume,
therefore, that p < g, and apply Corollary 5A of [46]. As in the proof of Theorem 2.7,
we will apply Rockafellar’s result with D(s):=(p, q) for all s in S. Writing R.. for the
nonnegative reals, the normal cone to cl (D(s)) is given by

-R, ifv=p,
(2.11) Nip ai(v)=4{0} ifve(p,q),
R, ifv=gq,

for v in [p, q]. Applying Rockafellar’s result shows that ue€dJ,«(z) is equivalent to
the first two statements along with u, being N;,,-valued: in other words (using the
fact that p, <« |u,]),

d,
(2.12) El%l]e Nipai(z(s)) ae.[|u,/lonS.

The remainder of the proof is reasonably straightforward measure theory (see [8, Thm.
3.5]). 0

3. Primal and dual constraint qualifications. The optimization problem that we
wish to consider is

inf J'S [(x(s))+ zo(s)x(5)] dp,

subject to j a;(s)x(s)dp=»b;, fori=1,...,n,
S

X € Ll(sa p)’
or in our previous notation,
(P) inf {I,(x)+(z, x)| Ax =b and x € L,(S, p)}.

The extra linear functional corresponding to z, in the objective is introduced to
allow us to model some best entropy estimation problems where a prior estimate is
given (see, for example, [28] and [29]), and to consider the log-barrier penalty function
for semi-infinite linear programming [55]. We could consider the problem (P) posed
in any of the spaces L,(S, p), for 1=r=o0, or even in C(S), but since L,(S, p) is the
largest of these spaces, it is the natural choice if we wish to find an optimal solution.
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Unfortunately, L,(S, p) is not typically a dual space, so we are unable to use
weak-star compactness arguments to prove attainment. Furthermore, unless p = —c0
and g = +o0, the level sets of I, will not typically be weakly compact in L, (see [7]).
In this case special arguments are needed to prove attainment, dependent on the
underlying measure space (S, p) and the constraint map A (see, for example, [6]).

The idea of considering solutions to optimization problems in L, which may have
singular components is not new. An example in optimal control appears in [4], and
was extended in [41]. In this latter thesis the approach taken is to consider the problem
in Fenchel form and then to solve the second dual. This gives a so-called “weak”
solution (see [16, § II1.6]).

For this reason we introduce the following “extended primal problem:”

(Pe) inf {J%+(u) +(20, w)| B*p=b and p € M(S)}.
Using Corollary 2.9 we can rewrite this as

inf I [ (x(5))+ zo(5)x(s5)] dp + qv™" (S) —pr™(8) + I zo(s) dv

S
(Pk) subject to Jai(s)x(s)dp+I a;(s)dv=>b; fori=1,...,n,
S S

xeL(S,p), veM(S), vlip.

Notice that (Py) is exactly (P) if we require the singular component » = 0. Under
reasonable conditions (Pg) will always have an optimal solution: as we shall see, the
singular component corresponds with singularities observed in practice when (P) fails
to have an optimal solution. In fact, Corollary 2.9 allows us to omit the constraint
v 1 p if so desired (see [8, Thm. 5.3]).

Our arguments are based on duality techniques. The dual problem for (P) (see

[6]) is
(P*) sup {b"A — I,x(A*A —z) | A eR"},

which we may write as

(3.1) sup {b"A —J,«(BA—z,) | A eR"},
or as
(3.2) sup {bTA—J- o*(ATa(s) — z(s)) dplAeR”}.

We denote the value of an optimization problem (Q) by V(Q)e[—0, +0]. We say
(Q) is consistent if there is a choice of the variable that satisfies the constraints and
has finite objective value.

As usual, we have an easy weak duality result. The problems (Pg) and (P*)
(written in the form (3.1)) are Fenchel duals of each other, so a simple dual constraint
qualification ensures that V(Pg)= V(P*) and V(Pg) is attained (the motivation for
its introduction). We will henceforth ignore the case where ¢ is affine, which is trivial.

Dual Constraint Qualification. The function ¢ is not affine, and there exists a A
in R" with A"a(s)—z(s) e (p, q) for all s in S.

Note that the assumption that ¢ is not affine ensures that p <gq. If, as frequently
occurs in practice, one of the a;’s is a nonzero constant function, z,=0, and ¢ is not
affine then the Dual Constraint Qualification will hold.



PARTIALLY-FINITE PROGRAMMING IN L, 255

In order to ensure attainment in the dual problem (P*) we need a primal constraint
qualification. We recall from [9] that if x lies in a convex subset C of a topological
vector space X, then x is a quasi-relative interior point of C (x € qri(C)) if ¢l (cone (C —
x)) is a subspace.

We will write [a, ], for the order interval {xeL,|a=x(s)=B almost
everywhere}. The usual constraint qualification for (P) is written

(PCQ,) beri(Adom(l,))

(see, for example, [43]). Since this condition may be difficult to check, we will rewrite
it in a more familiar Slater-type form.

(PCQ,) There exists x € qri(dom(1I,)), which is feasible for (P).

This in turn can be stated in the following equivalent but more applicable form.

Primal Constraint Qualification. There exists a function £ in L,(S, p) such that
X(s)eri(dom (¢)) almost everywhere, and AX = b.

(Of course, ri(dom (¢)) =(a, B) unless ¢ is the indicator function of a point.)
The following result may be found in [33].

LemMMA 3.3. The Primal Constraint Qualification, (PCQ,), and (PCQ,) are
equivalent. Furthermore, ri(A dom (I,)) =ri(A[e, B1.,), and providing a <,

aff (A dom (1)) = aff (A[a, B].,) = Range (A) = Range (B*).

If the constraint functions a,, ..., a, are pseudo-Haar, or, in other words, linearly
independent on every subset of S with positive measure (see [6]), then the Primal
Constraint Qualification can be weakened to:

There exists an £ in L,(S, p) with AL = b, and
(PCQ;) )
p{seS|a<x(s)<p}>0.

For a proof, see [33]. In summary, the Primal Constraint Qualification is easy to check
in practice.

THEOREM 3.4 (duality). V(P)= V(Pg)= V(P*). If the Dual Constraint
Qualification holds, then V(Pg)= V(P*), and if, furthermore, (Pg) is consistent then
V(Pg) is attained. If, on the other hand, the Primal Constraint Qualification holds then
V(P) = V(Pg) = V(P¥*), and if, furthermore, (P*) is consistent then V(P*) is attained.

Proof. The first claim (weak duality) is straightforward (see [8, Prop. 4.3]). Suppose
the Dual Constraint Qualification holds. By Theorem 2.7, J,« is finite and continuous

at BA—z,, where A is the point in the Dual Constraint Qualification. Thus by [46,
Thm. 3],

min {J¥«(u) +(z, )| B*u = b, and u e M(S)}
=sup {b"A —J,«(BA — z5) | A €R"},

which is exactly the required result. If, on the other hand, the Primal Constraint
Qualification holds, then V(P)= V(P*) by Corollary 2.6 of [6]. It follows by weak
duality that V(P)= V(Pg)= V(P*). O

Our next step is to derive the optimality conditions. The proof is an easy application
of weak duality and Theorem 2.10 (see [8, Thm. 4.10]).

& is feasible for (Pg), and
(OCPy) { i

[1 (S 8J¢*(B)—\ - Z()),
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(x, #) is feasible for (Pk),

(OCPY) ) %(s)edd*(X"a(s)— z(s)) ae.onS,

support (7)< {s€ S|A"a(s) — zo(s) = q}, and

( support (#7) = {s€ S|x"a(s) — zo(s) = p},

X is feasible for (P), and
(ocp) .

%(s)edap*(XATa(s)—zy(s)) a.e.onS.

THEOREM 3.5. (i) (OCPg) holds if and only if i is optimal for (Pg) and X is optimal
for (P*), with equal objective value.

(ii) (OCPY) holds if and only if (X, i) is optimal for (P%) and X is optimal for
(P*), with equal objective value.

(iii) (OCP) holds if and only if % is optimal for (P) and X is optimal for (P*), with
equal objective value.

COROLLARY 3.6 (strong duality). Suppose that the Primal and Dual Constraint
Qualifications hold. Then the two primal problems (P) and (Pg) (and (P%)) and the
dual problem (P*) all have equal, finite value, and there exist optimal solutions i for
(Pg) (and (%, ) for (P%)), and X for (P*), satisfying (OCPg) (or (OCP%), respectively).

Part (iii) of Theorem 3.5 is extremely instructive. In practice ¢* is usually
differentiable, so the last condition of (OCP) becomes

(3.7 x(s)=(¢*)'(X"a(s) — zo(s)).

It has been a frequent error in the more practical literature to assume that if A is dual
optimal then (3.7) gives the optimal solution of the primal problem (P). The feasibility
of this x is justified by differentiating under the integral in (3.2) with respect to A.
Unfortunately, as we shall see, in quite simple examples (satisfying the Primal and
Dual Constraint Qualifications) the X given by (3.7) can lie in L, and yet fail to be
feasible.

Theorem 3.6 shows that, under reasonable conditions, the X given by (3.7) corres-
ponds to the absolutely continuous part of an optimal solution of the extended primal
problem (Pg). It will be optimal for the original primal problem (P) if and only if it
is feasible. If it fails to be feasible this is due to singular components of the optimal
solution, supported on the set where A”a(s) — zy(s) hits the boundary of the domain
of ¢*. In principle, if this set is large, these singular components could be very
unpleasant, making any practical application or interpretation impossible. In fact, we
can generally restrict our attention to singular components consisting of finitely many
point masses (see [8]).

For the time being we confine ourselves to interpreting the singular components
in terms of primal optimizing sequences (cf. [16, Prop. I11.6.1]). A standard argument
(see [8, Thm. 4.13]) gives the following result.

THEOREM 3.8. Suppose the sequence (x,)7 in L,(S, p) is an optimizing sequence
for the primal problem (P): Ax,- b and I,(x,)+(z,, x,)> V(P) as r-> . Suppose also
that the Primal Constraint Qualification holds. Then the limit of any weak-star convergent
subsequence of (x,dp)T in M(S) is optimal for the extended primal problem (Pg).

Standard compactness arguments show that there will exist weak-star convergent
subsequences in the above result if, for example, S is metrizable, ¢ (u) =+ for u <0,
and for some j, a;(s)>0 on S (see [8, Cor. 4.14]).
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In [33] these results are applied to progressively refined discretizations of the
primal problem: it is shown that the corresponding optimal solutions typically have
weak-star convergent subsequences, any of which converge to an optimal solution of
the extended problem. This provides another more concrete justification for considering
this extension of the primal problem.

4. Primal attainment. As we saw in § 3, the existence of an optimal solution of
the extended primal problem ( Pg) (or any of its equivalent formulations) is a straightfor-
ward consequence of the Dual Constraint Qualification. By contrast, attainment in the
original primal problem (P) is a much more delicate matter: as we shall see, there
may fail to be an optimal solution in even very simple examples. The existence question
depends not only on the function ¢ in the objective but also on the smoothness of
the constraint functions a,,..., a,, on z,, and on geometric and measure-theoretric
properties of the underlying space (S, p). This question was addressed in [6], where
the existence of an optimal solution was demonstrated in particular for classical
(algebraic and trigonometric) moment problems with the Burg entropy as objective,
when (S, p) is a one-dimensional interval with Lebesgue measure. This had been known
previously for the trigonometric case (where the interval is [—, +#] and the moment
conditions consist of the first n Fourier coefficients of x) using very special contour
integral techniques [15], and for the two-dimensional trigonometric case in [56], and
more generally in [32]. The approach of the latter two papers is a direct investigation
of the map that takes a polynomial to the moments of its reciprocal. A contrasting,
duality-based approach is taken in [36]: some technical difficulties remain, as discussed
after Corollary 3.6.

In this section we will extend and clarify the results in [6] by using the results in
§ 3 on the existence of extended primal solutions. In particular, our new results will
give an entirely rigorous proof that the Burg entropy also entails the existence of an
optimal solution in the two-dimensional trigonometric case. By contrast, as we shall
see, simple three-dimensional problems fail to have optimal solutions. The idea is very
simple: given an extended primal solution (X, ), we need a condition to ensure, via
Theorem 3.5, that the singular part # vanishes.

To summarize, the approach here has three substantial advantages over [6]. First,
it is extremely natural, unlike the techniques in [6]. Second, it generalizes the results
in [6] to other important practical cases. Third, it reveals exactly the sense in which
existence can fail.

We begin with an informal discussion. Let us denote by ¥:R" - (—o0, +00] the
function I;«(A*(-)—z,), so the dual problem (P*) consists of minimizing the convex
function ¥(A) — b"A. Suppose for simplicity that a(s) is nonzero for every s in S. Then
it is easily checked that the interior of the domain of the dual objective function is
equal to

int (dom (¥)) ={A eR"|ATa(s) — zo(s) € (p, q) for all s € S}.

Suppose the Primal Constraint Qualification holds so there exists a dual optimum, say
A, with b€ dW¥(X). As is usual in convex analysis, the difficulties, if any, occur at the
boundary of dom (¥), while if A € int (dom (¥)) easy arguments identical to those that
follow show the existence of a solution to the primal problem (P). Of course, this
must be the case if dom (¥) is open. However, it will be true more generally, provided
there are no boundary points in dom ¥ at which subgradients exist. The difficulty is
in checking this, since boundary subgradients may exist even when ¢* is essentially
smooth.
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That is the origin of the following condition; we will work with it directly, but
similar arguments show it implies that ¥ (A) =@ whenever A £ int (dom (¥)). This also
has important computational consequences. In practice, (P) is generally solved via
the dual, so we seek to minimize ¥. When the condition below holds any minimizer
must lie in int (dom (¥)). Thus we can apply unconstrained search techniques
(appropriately safeguarded).

INTEGRABILITY CONDITION. For any function z:=A"a—z, (with A in R"), if
z(s)e(p, q) almost everywhere on S and ($*)'(z(-))e L\(S, p), then it follows that
z(s)e(p, q) for all s in S where a(s) is nonzero.

THEOREM 4.1. (i) Suppose ¢ is essentially strictly convex. Then if (X,, 7) and (X,, 7)
are both optimal for the extended primal problem (P%) then X, =X,, so in particular the
original primal problem (P) has at most one solution.

(ii) Let us suppose furthermore that the Primal Constraint Qualification holds. Then
the dual problem (P*) has an optimal solution, and if (X.) is optimal for (P%) and X
is optimal for (P*), then
(4.2) %(s)=(¢*)(ATa(s) —zy(s)) a.e.onS;
so, in particular, if (P) has an optimal solution it is given uniquely by (4.2).

(iii) Moreover, suppose also that the Dual Constraint Qualification holds. Then (PY%)
has an optimal solution (%, v) with the absolutely continuous part given uniquely by (4.2).

(iv) If, in addition, the Integrability Condition holds, then the singular part v vanishes,
so (4.2) gives the unique optimal solution of (P).

Proof. Part (i) follows by strict convexity.

Parts (ii) and (iii) follow by Theorem 3.5 and (2.4). Assume finally that (X, 7) is
optimal for (P}) with X given by (4.2), and suppose the Integrability Condition holds.
If we write Sy:={s € S|a(s) =0} then, from (OCP}), 7 is supported on S,, and by the
Dual Constraint Qualification, —zy(s) € (p, q) for all s in S,.

But now (X, 0) is also feasible for (P}), with a corresponding drop in the objective
value of

417+(S)—P17_(S)+J zo(s) d5=I (q+20(s)) dﬁ+-J (p+2zo(s)) dv™ >0,

unless # =0. Hence the result. 0

The Integrability Condition actually turns out to be necessary, as well as sufficient,
for the existence of a primal solution in general. That is the substance of the next result.

THEOREM 4.3. Suppose ¢ is of Legendre type and the Integrability Condition fails.
Then there exists a right-hand side b in R" such that the primal problem (P) satisfies the
Primal Constraint Qualification, but has no optimal solution.

Proof. Since the Integrability Condition fails, there exists a function z:=1"a —z,
satisfying Z(s) € (p, q) almost everywhere and with X(-):=(¢*)'(2(-)) in L,(S, p), but
with S, :={s e S|a(s) #0, Z(s) = p or q} nonempty. Define b = AX. Note that a < %(s) <
B almost everywhere by Lemma 2.6. Thus b e ri(A dom (I,)) by Lemma 3.3.

Now choose any v in M(S), with

support (v") = {se S|a(s)#0, z(s) = q},
support (v) = {se S|a(s) #0, z(s) = p},

and B*v = [ a dv # 0. For example, a point mass at any point of S (with the appropriate
sign) will do. It follows by Lemma 3.3 that

b:=b+eB*veri(Adom (I,)),
provided that € > 0 is sufficiently small.
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Clearly now, the Primal Constraint Qualification holds (Lemma 3.3). Furthermore,
if we write #:= v, then (X, #) and A satisfy (OCP%) and thus are optimal for (P})
and (P*), respectively, so ¥ is the only possible optimal solution of (P), by Theorem
3.5(ii) and (iii). However, X is not feasible for (P), since b # b. 0

We now pursue a slight digression, to discuss the approach of [56] and [32]. We
will show that their key supporting result, which is of some independent interest, can
be subsumed by this approach. The idea of Woods, and Lang and McClellan (working
in the special case where the a;’s are multidimensional trigonometric polynomials and
¢ is the Burg entropy) is to consider the nonlinear system of equations in A € R" derived

(formally in these references but rigorously above) from the optimality conditions
(ocCP):

(NLE) I a;(s)(d*)'(ATa(s)—zo(s))dp=b;, fori=1,...,n.
S

Assuming the existence of a dual optimal A (a difficulty not addressed in the above
papers), the primal optimal solution % (if it exists) must have the form (¢*)’ (A"a(s) -
z¢(s)), so it may be obtained by solving (NLE) for A.

Assuming ¢ is of Legendre type it is clear, as in the proof of Theorem 4.3, that
(NLE) is certainly not solvable unless beri(A[a, B].,). The point (obvious from an
optimization viewpoint but surprising ab initio) is that the Integrability Condition
gives a complete characterization.

COROLLARY 4.4. Suppose ¢ is of Legendre type and the Dual Constraint Qualification
holds. Then (NLE) is solvable for every b in 1i(A[a, B].,) if and only if the Integrability
Condition holds.

Proof. The first direction follows from Theorem 4.3 and the comments above. The
converse follows from Theorem 4.1. O

Taking ¢ to be the Burg entropy and the a;’s as (multidimensional) trigonometric
polynomials, we obtain the result in the Appendix of [32].

These results demonstrate the importance of the Integrability Condition for the
question of attainment in the original primal problem. The remainder of this section
will be devoted to investigating for what spaces (S, p), objectives ¢ and z,, and
constraints a it holds. We shall see that the important features are the local geometry
of the set S, and the growth rate of (¢*)’ near p and q. We adopt an approach which
gives unified conditions for the cases of common interest, namely, ScR™ form =1, 2, 3.
We shall suppose for the remainder of this section that S is a compact metric space
with metric d(-, ), and we write B(s, r) for the open ball, centre s, radius r. For any
s in S we define x,(r):=p(SN B(s,r)). The following result is derived from an
elementary estimate of the integral in the Integrability Condition (see [8, Thm. 6.6]).

THEOREM 4.5. Suppose S is a compact metric space, a,, ..., a, and z, are Lipschitz

on S, ¢ is essentially strictly convex, and the following two conditions hold for any s, in
S and k> 0:

lim inf_ r[(1/&)(xs(r+€) = x: (rI(*) (g —kr)]>0, if g<+o0;

8l0 0<s=r=5

lim . inf \ (=n)(1/ &)(Xsp(r + &) = X5, (TN (*) (p + kr)]>0, if p>—c0.
Then the Integrability Condition holds.

In practice S is often a compact subset of R™ with Lebesgue measure, and in this
case we can often simplify the required conditions. The Dubovitskij- Miljutin (DM)
cone will be useful in what follows (see, for example, [2]).
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DerFINITION 4.6. For a subset K of a normed space V, and for s in cl K, we define
Dy (s):={ve V|s+(0, e]B(v, ) = K for some & > 0}. We say that K is DM-regular if
Dk (s) is nonempty for all s in K.

The condition of DM-regularity ensures that the sets in which we are interested
have no cusps. In a normed space it is easily checked that any convex set with nonempty
interior is DM-regular. A subset of a normed space defined by inequalities will be
DM-regular providing a suitable constraint qualification holds everywhere (see [2,
p. 126], for example). Obviously, an arbitrary union of DM-regular sets is DM-regular.

Let us denote m-dimensional Lebesgue measure by 7,. Using the fact that an
open convex cone must intersect the surface of the unit sphere with positive area, we
obtain the following (see [8, Lemma 6.11]).

LemMA 4.7. Suppose S € R™ (with Euclidean distance) is compact and DM-regular,
and for some k>0, p = kr,, on S. Then for any s, in S,

(4.8) lim inf rl_m[(l/s)(XSO(r+ €)= Xs(r))]1>0.
810 g<p=r=5

We can now derive a more useful version of Theorem 4.5.

THEOREM 4.9. Suppose that S is a compact, DM-regular subset of R™, and p
dominates a positive multiple of Lebesgue measure on S. Suppose that a,, ..., a, and z,
are Lipschitz on S. Finally, suppose that ¢ is essentially strictly convex, with
lim, o r™"(¢*)'(q—r)>0if q<+c0, and if p> —co, lim ;o — r"(d*)'(p+r)> 0. Then the
Integrability Condition holds, so if in addition the Primal and Dual Constraint
Qualifications hold, the original primal problem (P) has a unique optimal solution.

Proof. By Lemma 4.7, for any s, in S, (4.8) holds. Now for any k>0, if g <+00,

lim inf_ r[(1/e)(x.(r+e) — Xso(MIL(¢*) (g —kr)]

<e=rs

8l0 O<e=r=

= {lim inf__ r'""[(1/)(Xs,(r +2) -xso(r))]}{lg?g Jnf r (%) (¢~ r)}

(since both factors are nonnegative). The first factor is strictly positive by (4.8), and
the second is strictly positive by assumption. The first condition of Theorem 4.5 follows,
and a similar argument shows the second condition. The result now follows from
Theorem 4.5. |

Probably the most important application of this result is when S is a compact
interval of R and ¢ is the Burg entropy (1.3). In particular, we obtain the original
existence result of [15].

The periodic case. In many cases in practice the moment conditions are given by
Fourier coefficients. In other words, the constraint functions a,,...,a, are
trigonometric polynomials (possibly multidimensional) and hence periodic. In these
cases it is often possible to weaken the conditions for attainment in the original problem.

DEFINITION 4.10. Suppose e',..., e™ form a basis of R™. With respect to this
basis, we say ScR™ is covering if Ugezm (S+Y -, 8,¢')=R™ We say a function
z:S—>R is periodic if z(s) = z(s") whenever s—s’=2;"=1 6;e’ for some 0 in Z™.

The idea is to use the following simple result [8, Lemma 6.16].

LeEMMA 4.11. Suppose z:S >R is periodic, with Vz Lipschitz on S, and suppose S
is covering. Suppose z(s)=q for all s in S and z(s,) = q. Then for some k,>0, z(s) =
q—ki||s —so||* for all s in S.

Using this to estimate (¢*)'(z(s)) we arrive at the following refinement of
Theorem 4.9.

THEOREM 4.12. Suppose that S is a compact, DM-regular, covering subset of R™,
and p dominates a positive multiple of Lebesgue measure on S. Suppose that Va,,...,Va,
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and Vz, are Lipschitz on S and a,, ..., a, and z, are periodic. Finally, suppose that ¢
is essentially strictly convex, with lim, o r"(¢*)'(q—r’)>0 if g<+o, and lim, ,—
r™(¢*)(p+r*)>0 if p>—c0. Then the Integrability Condition holds, so if in addition
the Primal and Dual Constraint Qualifications hold, the original primal problem (P) has
a unique optimal solution.

Again, probably the most important application of the above result is when ¢ is
the Burg entropy and S =[—, 7]* with trigonometric polynomials a,, as, ..., a,, Z-
In particular, we obtain the existence result in [56].

Theorems 4.9 and 4.12 involve growth conditions on (¢*)'. It is easy to translate
these into conditions on ¢/, if so desired, using Lemma 2.6 (see [8, Lemma 6.19]).

5. Computation, primal uniqueness, and examples. In this section we will discuss
how to solve the extended primal problem (Pg), and give conditions ensuring it has
a unique solution. Suppose that the Primal and Dual Constraint Qualifications hold
and that ¢ is essentially strictly convex, so ¢* is essentially smooth. From the Strong
Duality Theorem (Corollary 3.6) we know that the dual problem (P*) has an optimal
solution A, and (P}) has an optimal solution (X, #), where the absolutely continuous
part X is given uniquely by

(5.1) x(s)=(¢*)'(X"a(s) = zo(s))

(by Theorem 4.1), and the singular part # can be chosen arbitrarily, provided that it
satisfies the optimality conditions (OCP%). In order to compute a solution we first
solve the dual problem. This is a concave maximization problem, and the objective
function is continuously differentiable on the interior of its domain, so a wide variety
of standard numerical techniques may be applied.

The continuous part of the primal solution % is now given by (5.1), while the
singular part is any measure # which is singular with respect to p and satisfies

(5.2) support (77) = {s € S|]ATa(s) — zo(s) = q},

(5.3) support (7)< {s€ S|1"a(s) — zo(s) = p}, and

(5.4) j' a;(s)dv=b; ——J a;(s)x(s)ydp fori=1,...,n.
S S

(We know there exists a solution.) It can be shown using techniques analogous to
those used in semi-infinite programming (see, for example, [1]) that we can restrict
attention to # for which #* and #~ are supported on n+1 points in S (see [8, § 5]).
Conditions (5.2)-(5.4) then form a semi-infinite linear problem for which standard
numerical techniques are available (see, for example, [23]).

The idea of a Tchebycheff system will be useful for our discussion of uniqueness.
Working on a fixed, finite interval S in R, for a continuous function f we denote by
Z(f) the number of distinct zeros of f, counting twice the zeros in the interior of S
at which f does not change sign. The following result [30, Thm. [.4.2] essentially
characterizes Tchebycheff systems.

THEOREM 5.5. If {a,,...,a,} is a Tchebycheff system on S then ZATa)=n-1,
provided that A is nonzero.

COROLLARY 5.6. Suppose {a,,...,a,} is a Tchebycheff system on S,a,=1,p=
ATa(s)=qforallsin S, and Aa is not identically p or q. Then we have |{s€ S|A\Ta(s)=p
or q}|=n.

Proof. Denote the number of endpoints of S at which A"a(s)=p or q by n, and
n¢, respectively, and the number of interior points by n}, and n, respectively. Then
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n,+ng=2, and by Theorem 5.5,
nt+2ni=Z(\"a-p)=n-1,
and
né+2nl=2Z(qg—A"a)=n-1.

Adding gives 2(nj+n,+n§+n})=2n, from which the result follows. O

THEOREM 5.7. Suppose the Primal and Dual Constraint Qualifications hold, ¢ is
essentially strictly convex, S is a finite, closed interval in R, {a,, ..., a,} is a Tchebycheff
system on S, a;=1, and z,=0. Then the extended primal problem (Pg) (or (P%)) has a
unique optimal solution.

Proof. If X is a dual optimal solution then, from the above discussion, the absolutely
continuous part of any extended primal optimal solution (X, 7) is given uniquely by
%= (¢*)'(A\Ta), and since ¢* is essentially smooth, A”a is not identically p or q. The
singular part # must satisfy (5.2)-(5.4), and Corollary 5.6 shows that it is supported
on at most n points, determined by X. The set of linear equations resulting from (5.4)
then has a unique solution for » since {a,,..., a,} is a Tchebycheff system. 0

Analogous results could be proved when {a,,...,a,} is a periodic Tchebycheft
system, as in the trigonometric moment problem.

Examples. We begin by discussing two examples from [6]. The first is a simple
semi-infinite linear program, where ¢(u):=u if u=0 and +o0 otherwise (note this is
not an affine function):

1
inf J x(s) ds,
0
1
(E1) subject to J sx(s)ds=1,
0
0=xeL,]0,1].
The dual problem is
1
(E1%) sup {A—j 8(A|(—o0,1]) ds AER},
0

where 8(-|C) is the indicator function of C. The Primal and Dual Constraint
Qualifications are both satisfied, the unique dual optimal solution is A =1, and both
problems have value 1, but the primal value is not attained. The extended primal
problem is

inf x(s) ds+v[0,1],

1

sx(s) ds+f sdv=1,

0

J’l
0

1
(Elg) subject to J
0
0=xeL,[0,1], 0=veM[0,1], dv.Ll.ds,

and our results show that the unique optimal solution is a unit point mass at 1, giving
the value 1.
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The second example uses the objective function ¢(u)=1/u if u>0 and +o
otherwise:

2ar
inf J (1/x(s)) ds,
0
2
(E2) subject to J sin(s)x(s) ds=1,
0
0=xeL,[0,27].
The dual problem is
2
(E2%) sup {/\ —J ¢d*(Asin(s)) ds|re R} R
0

where ¢*(v) =—-2(—v)"? if v=0 and +o otherwise. The only dual feasible solution
is X =0, which is therefore optimal, with value zero. Note that, although the Primal
Constraint Qualification is satisfied, the value of the primal problem is zero and is
unattained. Furthermore, the extended primal problem (not considered in [6]) is

inf r"(l/x(s» ds,

0
2w

2
(E2g) subject to I sin(s)x(s) ds+J sin(s) dv=1,
0 0

0=xeL,[0,27], 0=ve M[0,27], dv.Lds,

and this problem also does not attain its value of zero. The reason is, of course, that
the Dual Constraint Qualification is not satisfied.

The final two examples are particularly interesting since the objective function is
the Burg entropy, which is widely used in practice. The first problem is extremely
simple, and demonstrates the importance of the assumption that the constraint functions
are Lipschitz in Theorem 4.9. We consider the primal problem

1
inf —log (x(s)) ds,
JO
1
subject to x(s)ds=1,
JO
(E3) ?
s%x(s) ds = a,
JO

0=xe L,[0,1],
where a € (0, 1). The dual problem is

1
sup A0+aA1+I [1+1og (—Ao—A,5"?)] ds,
0
(E3%) subject to —A0=0, Ao+A;=0,
Ao, A ER

(where the extra constraint is implicit in the objective function).
It is straightforward to check that both the Primal and Dual Constraint
Qualifications hold. We would expect, from the form of the constraints in (E3), that
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the weight in the optimal density will shift from right to left in the interval [0, 1] as
we decrease a in (0, 1), and this is indeed what happens. We know from (4.2) that
the absolutely continuous part of any extended primal solution is given by X(s):=
(=Xo—A,5"%)7!, where A, and A, are dual optimal, and it may be checked that for a
in(3,1), Xo+A;5"2>00n[0, 1], so X is the unique primal solution. At a =% the optimal
solution xX(s)=1, and as a decreases the weight shifts to the left until at a =3 the
unique optimal solution is X(s) =(1/2)s /2. For a in (0, 1] it can be checked that the
dual optimum is A,=0, X,=—a~', and % is no longer feasible for (E3).

What has happened is that part of the optimal solution has condensed into a point

mass at the origin, as would be shown by discretization. The extended primal problem
is

1
inf —log (x(s)) ds,
JO
1
subject to x(s) ds+»[0,1]=1,
0
(E3g)

1 1
x(s)s? ds+J s dyv = a,

0

JO
0=xeL,[0,1], 0=veM][0,1], dv.Llds,

and this has a unique optimal solution for & in [0,3], %(s)=as™"? and 7 a point
mass of (1—2a) at the origin.

The last example was presented in [40] to demonstrate the problems associated
with the Burg entropy for three-dimensional density reconstruction, and it has also
been discussed in [52] and [14]. The underlying set S is the unit cube in R®, [0, 173,
with Lebesgue measure ds, and the problem has simple trigonometric moment con-
straints:

r

inf —log (x(s)) ds,
S

subject to x(s)ds=1,
S
(E4)

r

x(s)cos 2ms;))ds=a, fori=1,2,3,
JS

0=xe L,(S),

where a €[0, 1). The dual problem is

3 3
sup Aot+a A‘+I [1+log (—AO—Z A; cos (27rs,~))] ds,
1 S 1
3
(E4*) subjectto  —Ao=Y |A4,
1
A09A1a)‘2’A13€|R

(where again the extra constraint is implicit in the objective function).
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Straightforward calculations will now verify the following assertions. The Primal
and Dual Constraint Qualifications both hold, and the unique dual optimal solution
has the form (Ao(@), A(@), A(a), A(a)) for each a. Thus the absolutely continuous part
X, of any extended primal solution (X,, #,) is given uniquely (see (4.2)) by

(5.8) X, (s)= (—Xo(a) —Ma) Z:: cos (27Ts,~)> _1.

The interesting phenomenon is to observe what happens as a increases. The
trigonometric polynomial in (5.8) is strictly positive for small a, and X, is feasible for
the primal problem (E4), as is the unique optimal solution. As a approaches a certain
critical value &, the minimum value of the polynomial decreases to zero, until the point
when a = &, where the polynomial has a zero when s; =0 or 1 for i =1, 2, 3. The unique
optimal solution of the primal is still X;. However, as a increases past & the character
of the solution changes. For a € (&, 1) the unique dual optimal solution is (1/[1—a]) X
(-1,3,3, %), so (5.8) becomes

1-a

(5.9) x“(s)=(1—§zf cos (2ms;))’

which is no longer primal feasible.
The extended primal problem is

r

inf —log (x(s)) ds,
S

subject to x(s) ds+v(S)=1,
S
(E4g)

x(s) cos (27rs;) ds+J cos 2ws;))dv=a fori=1,2,3,
N S

0=xeL,(S), 0=veM(S), dvlids.

Our results show that the absolutely continuous part of the optimal solution is given
by (5.9), and the optimality conditions ensure that the singular part 7, is supported
on the zeros of the denominator of (5.9), namely, s; =0 or 1 for i =1, 2, 3. These points
are equivalent up to periodicity, so essentially the unique singular part is a point mass
at the origin with weight ((a —a)/(1—&)).

The critical value of a is given by

3 -1 -1
(5.10) &=1—(J (1-§zcos (Zwsi)) ds) ~ .34,
S 1

(This integral is actually Green’s integral for the cubic lattice, and has the closed form
['(1/24)T(5/24)T'(7/24)T'(11/24)(6)"/?/32%>; see [24].) In the case discussed in [52]
and [40] an optimal solution was proposed informally for the case a =.5; our solution
agrees exactly.

As a final comment, numerous different measures of entropy ¢ have appeared in
the literature. A survey of some of these, with their conjugates and associated p and
g, may be found in [6].
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