
SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 191-205, May 1991

1991 Society for Industrial and Applied Mathematics
003

CONVERGENCE OF BEST ENTROPY ESTIMATES*

J. M. BORWEIN" AND A. S. LEWIS

Abstract. Given a finite number of moments of an unknown density on a finite measure space, the
best entropy estimate--that nonnegative density x with the given moments which minimizes the Boltzmann-
Shannon entropy I(x):= x log x--is considered. A direct proof is given that I has the Kadec property in

L--if Yn converges weakly to 37 and I(yn) converges to I(37), then yn converges to 37 in norm. As a corollary,
it is obtained that, as the number of given moments increases, the best entropy estimates converge in LI
norm to the best entropy estimate of the limiting problem, which is simply in the determined case.
Furthermore, for classical moment problems on intervals with strictly positive and sufficiently smooth,
error bounds and uniform convergence are actually obtained.
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1. Introduction. We shall suppose that (S,/z) is a finite measure space, and define
the closed proper convex function b:R--> (-, +c] by

ulogu, if u>0,
b(u) := 0, ifu =0,

+, if u < 0.

This function is a normal convex integrand [18], allowing us to define (minus)
the Boltzmann-Shannon entropy 16 (x): LI(S, ) -> (-, +c] by

(1) 16 (x):= j 6(x(s)) dtx(s).

Suppose 0 =< g LI(S, tz) is an unknown density that we wish to estimate on the
basis of a finite number of observed moments,

bi Is g(s)ai(s) dlx(s), i= 1,..., n,

where the ai’s are given functions in L(S, tz). This is a problem which commonly
arises in diverse areas of physics, engineering, and statistics (see, for example, [14]
and [11]). One popular technique is to choose the maximum entropy estimate--the
solution of the optimization problem

minimize I6 (x)

(Pn) isubjectt IsX(S)ai(s) dlx(s)=bi’ i=l" "
tx)

Attractive dual methods are available for solving the problems (Pn) computa-
tionally (see, for example, [7]).
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One measure of the effectiveness of this approach is the behavior of the optimal
solution xn of (Pn) as n-c (see, for example, [5] and [20]). At least when g is
determined uniquely by the moment sequence ( gai) we would hope that x converged
to in some sense. In [17] it was shown essentially that in this case x d/x converged
to d/x weak-star as measures, while in [3] this was strengthened to the result that x
converges weakly to in L1 (see also [10] and [15]). In this paper we will show that,
in fact, x converges in L1 norm to , and that with some further assumptions, the
convergence is actually uniform.

The results break naturally into two parts. In the first we demonstrate the simple
but remarkable geometric fact that, in common with the Lp norms (1 <p < ), the
Boltzmann-Shannon entropy 16 has the Kadec property: weak convergence of xn to
g and convergence of 16 (xn) to 16 () implies norm convergence of xn to . Our proof
will be self-contained and straightforward. In the section which follows, we deduce
the required convergence result and discuss some further implications.

In the second set of results, we begin by deriving a bound for the L1 error in
estimating : by x using duality techniques. Finally, when is strictly positive and
sufficiently smooth, we are able to combine this bound with ideas from the first collection
of results and some standard approximation theory to show that, for classical algebraic
and trigonometric moment problems on intervals, the best entropy estimates x converge
uniformly to the underlying unknown density

2. Strongly convex functions. In this section we derive the geometric property of
the entropy which we will apply to the question of convergence.

LEMMA 2.1. The Boltzmann-Shannon entropy I defined in (1) is a proper, lower
semicontinuous convex function, strictly convex on its domain,

dom 16 := {x LI(S tz) I (x)< +o},

and with weakly compact level sets, {x LI S,
Proof. (See [19].) The fact that the level sets are weakly compact follows either

from the fact that the conjugate function b*(v)= ev-1 is everywhere finite, or directly
from the Dunford-Pettis criterion [8].

The following inequality relating the so-called I-divergence of two probability
densities with their L1 distance appeared independently in [6],[12], and [13]. For
completeness, we include a proof, following [12].

LEMMA 2.2 (a) For 0 < v , 0 <- u

(u v)2_-< ((2u/3)+ (4v/3))(u log (u/v)- u + v).

(b) For O<-x, yeLl(S, dtz) with sX(S) dtx=sy(S) d/x 1,

1
Ix(s)-y(s)ldz

s
x(s) log (x(s)/y(s)) dtx >=- s

Proof. (a) It is easy to check by differentiating that the function

+-- (tlogt-t+l)-(t-1)2

is convex on [0, +), and attains a minimum value of 0 when 1. Putting := u/v
gives (a).

(b) If y(s)--O and x(s)>O simultaneously on a nonnull set, then the left-hand
side is + and there is nothing to prove. Therefore, assuming this does not occur, we
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can restrict attention to the case where x(s)>0 and y(s)>0 almost everywhere (if
necessary, removing the set where x(s) y(s) 0). Now set u := x(s) and v := y(s) in
(a), take square-roots, and apply the Cauchy-Schwarz inequality to obtain (b), noting
that u log (u/v) u + v >= O, by (a). [3

Notes. (1) We use the inequality (b) only in the case where log y L, in which
case there is no difficulty in defining the left-hand side in (b). If, however, we wish
to be more precise, we define the left-hand side as +o unless x_>-0; otherwise it is
defined as

I (x)+ Is O(y(s), s) dtz(s),

where @’R x S- (-, +] is the normal convex integrand

(v, s):= -x(s) log v,
+03,

ifx(s) =0,
ifx(s)> 0,
ifx(s) > 0,

v>0,
v<-0

(see [18]).
(2) It is easy to see from the proof that inequality (b) is strict unless x y almost

everywhere.
(3) As observed in [12], the constant 1/2 on the right in (b) is the best possible.

2 replacing IIx y ][ for(4) We cannot hope for a similar inequality with IIx-yll
some p > 1 on the right. To see this, take S [0, 1] with Lebesgue measure; define, for
k>l,

k, fors[0, l/k],
X(S) :--

0, for se (1/k, 1];

and let y(s):= 1 almost everywhere. Then j x log x/y=log k, while it is easy to see
2 ka(1-1/p)that IIx-yll--

Despite observation (4) above we can prove a somewhat similar result for the Lp
norms.

PROPOSITION 2.3. For O<-x, yLoo(S, dtx) with sX(S) dtx=sy(S dtx, and 2 <-

p < +o,

X(S) log (x(s)/y(s)) ate >- (lip(p- 1))(max {llxll, yll}) -llx yll,

Proof. Suppose v (0, 1]. It is easy to check by differentiation that

q(u) := u log (u/v)- u + v -(1/p(p 1))lu vle

is convex for u [0, 1 ] and attains a minimum value of 0 at u v. Thus for u [0, 1 ],
v (0, 1], we have

u log(u/v)-u+v>-(1/p(p-1))lu-vl v.

As before, we can restrict attention to the case where y(s)>0, almost everywhere.
Now if we set M:= max {llxll, Ilyll}, put u :- (1/ M)x(s) and v := (1/ M)y(s) in the
above, and integrate, we obtain the result, l-]
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We are now ready to prove the geometric property of the Boltzmann-Shannon
entropy 14, that we will apply to the moment problem. In keeping with the terminology
for normed spaces we make the following definition.

DEFINITION 2.4. Suppose X is a normed space with f:X--> (-o, +].
(a) (See [3].) The function f is Kadec if, whenever y,-->)7 weakly in X and

f(y,)-->f() < +, it follows that y,--> y in norm.
(b) The function f is strongly convex if it is Kadec and is a lower semicontinuous

convex function, strictly convex on its domain {x If(x)< +}, with weakly compact
level sets {x]f(x) <-_ a} for a.

For example, with X= Lp(S, tz) for 1 <p<+, the norm/(x) := IlXllp is strongly
convex (see, for example, [8]). The main result of this section will be that the entropy
14, is strongly convex on LI(S,/z). By Lemma 2.1, it remains to show that 14, is Kadec.

LEMMA 2.5. Suppose 0 <-- y,, LI(S, tz), for n 1, 2, , with, for each n,
y, > O. Suppose further that y, --> weakly in L1 and that 14, y, --> 14, (fi) < +o.
Then y, fi II, - o.

Proof By scaling the measure /z by a scalar factor, we lose no generality by
supposing that J y,=jy=l, for all n. For rn=l,2,..., we write (x^rn)(s):=
min {x(s), m}, and define

(2) ym:=(1-(1/m)) yam

Thus log y" L, and y’= 1.
Now we have

12 IlY,--Ymll21<-- f Y, log (y,/y’),

I (y.)- f y. log y

- 1 (y)- I y og y,

(.9 ^ m)] +(1/m)[l(S)-l].

by Lemma 2.2,

as n --> , by assumption,

1-(l/m)) log 37^ m (37^ m)

+(l/m) log [(S)-1]/+ 14, (.9) (convexity and (2))
)

(1- (1/ rn)) [{ log (f fi^ rn)}{f y}-f fi log (fi

+ (l/m)log [/z(S)] {f y} + I4, ()7).

Now since u log u->_-1/e for any u >_-O, we have

-1/e =< 37 log (37 ^ m) ’ 37 log fi 6 L1,

as m-->, so we can apply the monotone convergence theorem to deduce that as
m--> , the right-hand side tends to 0. Thus we obtain

(3) lim lim Y,, Y" II, 0.
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We also have

Ily-ll, (1-(l/m)) 37 ^ m

<=(/m)+ (-(/ml ^ m [(y m-]

+]][(1--(’/m))(;Am)-’--l]ll
=(1/m)+(1-(1/m)) m [-( m)]

0, as m by monotone convergence.

Finally, by combining (3) and the above, we obtain

lim y lll Y Y I], y ]]1 0,

(37 ^ m)] +(1/m)[la(s)-l]-.9

as m-0. [3

LEMMA 2.6. Suppose X is a normed space, and an--> 6 in .
(a) If wn -> weakly in X, then anwn -> weakly.
(b) If IIw-l[-0, then IIw-ll-o.
Proof The proof is elementary. [3

THEOREM 2.7. The Boltzmann-Shannon entropy 16 is strongly convex.

Proof By Lemma 2.1, we just have to show that 16 is Kadec. To this end, suppose
zn, L1, for n 1, 2, zn weakly in L1; and 16 (zn) 16 () < +. It follows
that 16 (zn)< +c, for all n sufficiently large, so , zn--> 0.

Consider first the case where 0, so > 0. By weak convergence, zn- , so
for all n sufficiently large, zn >0, and we can define functions 37: ( )- and
y, := ( Zn)-lzn. Thus 0=< y,, 37 L1, Yn )7 for each n, and by Lemma 2.6, y, 37
weakly. Furthermore,

I6(Yn)=I {(I Zn)--lznlog[(I Zn)--lzn]}
=(IZn)--{I6(zn)--(loglzn)IZ,}

=I,(y).
Thus Lemma 2.5 applies to show that []y,-9711 0, so by Lemma 2.6, ]]zn-[]l-0.

Finally, suppose =0. Since z, => 0 for large n, we have, as n c, ]]z,-11
zn --> 0 by weak convergence. [3

If we know a priori that the sequence (zn) in the above proof of the Kadec property
is uniformly bounded, we obtain a much stronger conclusion.

THEOREM 2.8. Suppose 0<= zn <= M almost everywhere, z,--> weakly in L, and

16 (z,) --> 16 (e). Then for any p < +, IIz. ell, - 0 as n --> .
Proof We first note that since the positive cone in L1 is closed, and hence weakly

closed, it follows from the assumptions that 0-< -< M, almost everywhere.



196 J.M. BORWEIN AND A. S. LEWIS

The proof is now exactly analogous to Lemma 2.5 and Theorem 2.7, with minor
changes. We can simplify the definition of ym in (2) to

ym :_ (1 -(1/ m)) + (1/ m)[tx(S)] -1,
and we use Proposition 2.3 in place of Lemma 2.2. The only real change is the case

0 in Theorem 2.7. For large n we know zn->-0, and we may as well assume that
zn 0. Now we can assert, by Proposition 2.3, for p _-> 2, large n, and some M => M2

(lip(p- 1))M]-p zn z _-< z log
p

=I6(z,,-(I z)log(I z)->0, as n->,

from which it follows that [[z, lip - 0.

3. L convergence. In this section we will apply the strong convexity of the entropy
16 to deduce, in particular, that if the unknown density g is uniquely determined by
its moments, ( gai), then the optimal solution x, of (P,) converges in L norm to
g. The approach will be through the following elementary result, which may be found
in [3].

THEOREM 3.1. Let X be a topological space, with a nested sequence ofclosed subsets,
X F1 F2 " , and suppose f" X -> (-oo, +oo] has compact level sets. Consider the
optimization problems

(qn) inf{f(x)lxF,}

(Q) inf f(x) x F,

The values of (Q) and (Q) are attained, iffinite, and the value of (Q,) increases in
n to the value of (Q) (finite or infinite). Suppose furthermore that xn is optimal for
(Q), and x is the unique optimal solution for (Q), with finite value. Then x, --> xo.

COROLLARY 3.2. Let X be a normed space with a nested sequence of closed, convex
subsets, X F F: . , and suppose f X --> (-c, +] is strongly convex. Suppose
that (Q) has finite value. Then (Q,) and (Q) have unique optimal solutions (with
finite value), x and x, respectively, and x, --> x in norm.

Proof. Existence follows from Theorem 3.1, and uniqueness is a consequence of
strict convexity. Theorem 3.1 shows that x, - x weakly, and also f(xn -->f(x), whence
xn x in norm, by the Kadec property. [3

We recall the problems (P,) of 1:

minimize 16 (x)

(P,) subject to j x(s)a(s) dtz(s) b, i= 1,. ., n,

O X G Ll(S,/).

The limiting problem is

minimize

(P) subject to

i(x)

s
x(s)ai(s) dtx(s) bi,

O<-xeL,(S,).

i=1,2,...,

Applying Corollary 3.2 gives the following result.
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COROLLARY 3.3. The value of (Pn) increases in n to the value of (P) (finite or

infinite). If (P) hasfinite value, then (Pn) and (P) have unique optimal solutions (with
finite value), x and x, respectively, and [Ix-xlll

Proof. The proof is by Corollary 3.2.
Notes. (1) Assuming, as in 1, that the bi’s are the moments of an unknown

density 0 -< L1, then if I6 ()<+ it follows that (P) has finite value.
(2) If, furthermore, S is a compact metric space with Borel measure/x, and the

linear span of {aili 1, 2,... } is dense in the continuous functions C(S) (as in the
classical trigonometric and algebraic moment problems), then it is easily checked that

is uniquely determined by its moments ( ,ai), and so x. In this case x. z II, -’ 0.
(3) Convergence in L1 norm is the best possible" in general, we cannot expect

convergence in Lp norm for any p > 1. To see this, suppose 0-< L with 16 () < +,
but that Lp for any p > 1. Such functions are not difficult to construct (see, for
example, [21]). It is well known that, under mild assumptions (see Theorem 4.2), the
unique optimal solution of (P,) is of the form

Xn e,[’:l Aiai--1

for some A ", and so x L for each n. If IIx - o, it would follow that Lp,
which is a contradiction for p > 1.

(4) On the other hand, if the xn’s are uniformly bounded, then we can apply
Theorem 2.8 in place of the Kadec property to deduce that Ilx, gllp - 0 as n - c, for
every p < +. Unfortunately it is unclear how we might know uniform boundedness
of (x,) a priori. We return to this question of stronger convergence in the next section.

In some estimation problems it is natural to suppose that the unknown density
is bounded above by some known constant 0< K R (see, for example, [7]). In this
case it may be appropriate to modify the Boltzmann-Shannon entropy I6 (x) to

16 (x) + I6 (K x), thereby incorporating this information. We then arrive at the follow-
ing modified problems:

minimize

(P) subject to f x(s)ai(s) dtx(s)= bi, i-- 1,..., n,
3s

I(x)+I(K-x)

x e L,(S, tx),

and the limiting problem

minimize

(P) subject to f x(s)ai(s) dtz(s) bi, i= 1, 2,.
3s

I (x)+ I (K-x)

x LI(S, A6).

The following proposition concerning strong convexity is useful in this context.
PROPOSITION 3.4. Let X be a normed space with f, g X - (-c, +c]. Suppose f is

strongly convex and g is convex, lower semicontinuous, and bounded below. Then f+ g
is strongly convex.
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Proof. Clearly f+ g is lower semicontinuous and convex, since f and g are, and
is strictly convex on its domain, since f is. Suppose g ->_ M. Then the level set

{xl(f+g)(x)<-_a}c {xlf(x)<-_a-M},
and is closed, so therefore it is weakly compact. Finally, the fact that f+ g is Kadec
follows from Theorem 6.5 in [3]. [3

From Corollary 3.2 we immediately deduce that if (P) has finite value, then the
unique optimal solution x’, of (P) converges in L1 norm to the unique optimal solution
x’ of (P) (and corresponding comments to Notes 1 and 2 following Corollary 3.3
hold). However, we can prove a stronger result.

THEOREM 3.5. The value of (P) increases in n to the value of (P) (finite or

infinite). If (P) has finite value, then (P) and (P) have unique optimal solutions
withfinite value) x’ andx’ respectively, and IIx’ x’ll, -, 0, as n - ,foreeryp /.

Proof. Since b (u) >_- 1/e for all u, I6 (K x) is bounded below (and certainly is
convex and lower semicontinuous). Therefore, by Proposition 3.4, I6(x)+I6 (K-x)
is strongly convex, so we can apply Theorem 3.1 and Corollary 3.2 to deduce the first
assertions and the fact that [[x’,-x’[[->0. Thus by lower semicontinuity,
limn_, I6 (x’) -> I6 (x’). However, we also know that

lim I6 (x’) lim (I6 (x’)+ I6 (g-x’)-I6 (g-x’,,))

I6 (x’) + I6 (K- x’) lirn 16 (K- x’,,)

<= I6 x’) + I6 K x’) I6 K

I (x’),
again by lower semicontinuity.

Thus 16 (x’)- 16 (x’), and Theorem 2.8 now gives the result.

4. Error bounds and uniform convergence. In the last section we saw that the unique
optimal solution xn of the problem (P,) converged in L1 norm to the unique optimal
solution of the limiting problem (P) (which in the determined case is exactly the
unknown density 2). In this section we will demonstrate how, in more special circum-
stances, we can provide bounds on the L1 error between x, and 2. In classical cases
this in turn allows us to prove that when 2 is strictly positive and sufficiently smooth,
x, actually must converge uniformly to 2. This of course is the most desirable result
in practice.

In order to accomplish this, we use a combination of ideas from the previous
sections and results from classical approximation theory to investigate the relationship
between (P,) and its dual problem. We therefore begin by summarizing what is known
in general about this duality (see, for example, [2]). Recall that the primal problem is

minimize I6 (x)

(Pn) subject to Js (x 2) ai d/z 0, 1,. ., n,

O<-xL,(S,).
The corresponding dual problem is then

i max,m,ze [
The following weak duality result is elementary.
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PROPOSITION 4.1. The value of (Pn) is greater than or equal to the value of (Dn).
In order to claim equality between the values of the primal and dual problems,

we need a constraint qualification:

(CQ) There exists an L1, feasible for (Pn) with finite value, and with (s) > 0 a.e.

In practice, it is frequently the case that the constraint functions {al, , an} are
pseudo-Haar (in other words linearly independent on nonnull sets). For example, this
is the case when the ai’s are linearly independent and analytic on a compact interval
with Lebesgue measure (which covers the classical moment problems). In this case,
providing that 2 is nonzero with finite value, (CQ) holds.

When the constraint qualification holds, we get a strong duality result.
TIJEOREM 4.2. Suppose (CQ) holds. Then both (Pn) and (Dn) attain their values,

which are equal. If A is optimal for (Dn), then the unique optimal solution of (Pn) is

xn := eET=laTa’-1.
All these results may be found in [2].
We define the constant En associated with the problem (Pn) to measure how well

it is possible to approximate 1 + log 2 uniformly with a linear combination of the ai’s,
i=l,...,n.

DEFINITION 4.3. For each n, En is defined to be + unless log 2 L, in which
case En := min {lIE,=1 Aiai- 1 -log 2[[[h

Using this constant we can now give a lower bound on the value of (Dn) (and
therefore of (P,)). We need the following lemma.

LEMMA 4.4. Suppose fl > O.
(a) If lul<=, then l+u<-e<-l+u+efl2/2.
(b) If lv-wl<- , then le-eWlfl(l’+efl/2)eW.
Proof (a) This part follows by Taylor’s theorem, and convexity.
(b) -fl(l+efl/2)<-fl<-v-w<-e-W-l<-v-w+efl2/2<-fl(l+efl/2), by

applying (a) twice. Thus [e-w- 1[<-/3(1+ e/3/2), and the result now follows.
THEOREM 4.5. For every n we have

len II6 (2)---> V(Pn)--> V(Dn)--> I6(2)- ET,

where En is given by Definition 4.3 and V(. denotes value.
Proof. The first inequality follows from the fact that 2 is always feasible for (Pn),

while the second is Proposition 4.1. We need only check the last for log 2 L. Since
span {al,"" ", an} is finite-dimensional, there exists Rn attaining the minimum in
Definition 4.3, so

Xai- l-log 2
i=1

-< En a.e.

Applying Lemma 4.4(a) now gives

ey’’i=Ixiai-l-lg’2 <- 1 / .iai- 1 --log 2
i=1

so multiplying by 2 (which is nonnegative) gives

eE’;=x,a,-1- 2 a <- -2 log 2 +_1
i=1 2

Integrating now gives the result.
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The following assumption holds in most of the cases in which we are interested.
ASSUMPTION. a 1.
PROPOSITION 4.6. Suppose a=-1. Whenever (P.) has finite value, denote its

(unique) optimal solution by
(a) If x is feasible for (Pn) with finite value, then xn log x <_- x log x.. In

particular, if (Pm) hasfinite value, with m >- n, then we have that x log x. _-< j Xm log
and if 14, (Y.) < +oo, then it follows that x. log x. _-< g log

(b) Suppose (CQ) holdsfor (P.). Ifx isfeasiblefor (P.), then we have x. log x.
x log x.. In particular, x. log x. : log x., and if (Pro) has finite value, with m >- n,

then x. log x. Xm log
Proof. Since & is convex, it is easy to check that if u > 0,

(4) (l/u){ 6(u+ uw)-cb(u)} $ (log u+ 1)w
as u $ 0. Then since x. is optimal for (P.), we have

0=<lim (1/u){I4, (x. + u(x-x.)) 14, (x.)}

-’f (logxn+l)(x--Xn)=f (X--Xn)lOgXn,

by the monotone convergence theorem (observing the fact that when u 1, the integrand
in the first inequality is integrable), providing x, > 0 almost everywhere, which gives
(a) in this case.

In view of Theorem 4.2, this is all we will use. However, in point of fact a more
precise argument shows that xn(s)=0 implies x(s)=0 almost everywhere (see [4]),
allowing us to restrict the range of integration to {slx,(s)>0}.

To see (b) we simply have to rewrite log x, using the known form of the solution
from Theorem 4.2. [3

By combining the above result with the weak duality bound in Theorem 4.5, and
using the inequality in Lemma 2.2, we obtain a bound on the L1 error of x, from
in terms of the approximation error E, of Definition 4.3. Ignoring the case 0, we
lose no generality (scaling if necessary) in assuming 1.

THEOREM 4.7. Suppose a 1, 1, and I4, (Y.) < +oo. Then the optimal solution
x satisfies

where E. is given by Definition 4.3.
Furthermore, if Lo and the sequence (x.) is uniformly bounded in L, then

given any 2 <-_ p <

(6) llx.
where the constant K is independent of n.

Proo By Proposition 4.6,

f I I le)logx._--> x. logx.=V(P.)_-> :log
2

E.

by Theorem 4.5. Applying Lemma 2.2(b) gives

1 f lee" 2

2 IIx. 11 = <
j

ff log (E/x.) <= E.

and hence the first result. The second part follows by using Proposition 2.3 in place
of Lemma 2.2.
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Thus we see that for large n, if we can approximate log : uniformly with a certain
error by linear combinations of the ai’s, 1,..., n, then x, approximates with
error no worse (asymptotically) in the L1 norm. In the last part of this section we shall
see that when E, is decreasing sufficiently quickly, as happens typically when is
sufficiently smooth, this actually forces uniform convergence of x to 2, due to the
known form of x from Theorem 4.2.

We know that, by definition, E 0 exactly when 1 + log lies in the closed span
of the ai’s in L. It follows from (5) that is therefore uniquely determined by this
fact and its moment sequence.

COROLLARY 4.8. Suppose al 1, log x and log x2 lie in cl span {al, a2," }, and
(X x2)ai O, for 1, 2,. .. Then x x2.

Proof Clearly 0 s x, x2 dom 16, and without loss of generality we may assume
that x x 1. If we set := x in (P,), then the corresponding sequence of optimal
solutions x, - x in L, by (5). Similarly, setting := x2 shows that the optimal solutions
2

X2" 2x,- However, since x and X
2 have identical moments, x, x,, for each n, so

X1-- X2, [3

DEFINITION 4.9. For each n 1, 2,. .,
:=max {llfllo/llfll,losfspan {al,""", a,}}.

We assume that at least one ai is not identically zero, whence it is clear from
positive homogeneity and compactness that A, is well defined for large n with 0 < A <
+, and A, is nondecreasing in n.

LEMMA 4.10. For any f span {al, ", a },

Ilf ll <_-- -log (1

where we interpret log (u) - if u <- O.
Proof. We first claim that for any u =>-M, with M > 0,

(7) le" 11--> M-(1 e-M)Iul.
TO see this, note that for u => 0, e 1 >- u, and eTM >= 1 M by convexity, so e 1 => u >=
M-(1 e-M)u, as required. On the other hand, for u [-M, 0], by convexity we have

exp {u} exp {(-u/M)(-M)+(1-(-u/M))O}

<= (-u/M) exp (-M) + (1 -(-u/M)) exp (0)

(-u/M) eTM + 1 + (u/M),

so we obtain 1- e"_-> -M-(1- e-a4)u, which gives (7).
Now to prove the lemma, we can suppose f 0. Then from (7) we obtain, since

f-->-Ilfll almost everywhere, le-ll>=llfllL(1-e-"rllo)lfl almost everywhere, so
integrating shows

lief- III, --> Ilf 51(1 e-little)[Ifll,--> A’(1 e-I111)
by Definition 4.9. The result now follows. [q

LEMMA 4.11. With E, defined as in Definition 4.3, there exists a p, in
span {al, , a,}, satisfying IIp- l-log xll= E, ana hence

IleP-’-ll’<-E"(l+l-E"eZ") f
Proof The first statement is just the definition of E,. Now applying Lemma 4.4(b)

Egives lep-I-I<-E.(I+sEe ) almost everywhere, and integrating gives the
result.
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We are now ready to obtain an estimate for the uniform error of the optimal
solution xn from .

THEOREM 4.12. Suppose al =- 1, ff 1, and log L (or equivalently, for some
6 > 0, t3 _-< ff 6 -1 almost everywhere). en with E, and A, defined in Definitions 4.3
and 4.9, the unique optimal solution of (P,),

X := eE%Aai-1,

has the property that

IIo -ol[E-o 1-(ess inf )-IA,E e-(1 + e./:+(E/2) ee-)}.

Proof Since > 0 almost everywhere, (CQ) is satisfied, so x, has the form given
by Theorem 4.2, and

(8) Ilx-llEe/,
by Theorem 4.7.

By Lemma 4.11, there exists p in span {a,..., a} with

(9) lip.- 1-log gll E,,

(10) lie p"-I- X]I E.(1 +E. e-).

If we write q. :=
i= A ai, we obtain from (8) and (10),

E.(1 +E. e + e/) ]e-’-

f eP.-’]eq,,-p"-

]]e q--p- 1]1 ess inf e p--l)

eqn-Pn-

by (9). Thus we obtain

1111 u e(1+u ee + e/a)(ess inf )-.

We now apply Lemma 4.10, observing that -log (1-u) is increasing in u"

Iq-pll-og (-alle- eEn-log {1- (ess infg) 1A,E, ee.(I+E, + ee-/)}.

This, in combination with (9), gives the result.
The error estimate in the above result shows that, providing, as n increases, that

A is increasing at a slower rate than E, is decreasing, then log x, must converge to
log in [. I. More precisely, we have the following result.

COROLLARY 4.13. Suppose al 1 and log L. Supposefurther that A,E, 0 as
n, where E, and A are given by Definitions 4.3 and 4.9, respectively. en the
unique optimal solution of (P,), x,, converges in

O(A,E,), as n .
Proo: Since g 0, we can, without loss of generality, scale so that d 1.

Since A, is nondecreasing in n, we have that E,- 0, so Theorem 4.12 shows that

l log x -log (lim
N (S) + 2(ess inf )-1,



CONVERGENCE OF BEST ENTROPY ESTIMATES 203

since An -> m jtz(S) -1. Thus for some constant k (independent of n), ]log xn -log 1 =<
kA,E, almost everywhere for all n; so by Lemma 4.4(b),

[Xn-l<-(kA,,En)(1 +e(ka"")(kAnEn)/2) a.e.

Thus limn_.oo IIx,-lloo/a,E, kllll, and the result follows.
So we see from the above that if En O(n-’) and A, O(n3), where/3 < c, then

xn converges to in with error no larger than O(n3-’). In general, E, (and
hence c) will depend on the smoothness of , whereas An (and fl) depends only on
the constraint functions {al,"" ",

Once we know that IIx-11-0, we can replace the use of (5) in Theorem 4.7
by (6). Following through the above argument, and replacing 11. II1 by I1" I1 where

A E2/P whereappropriate (p->_ 2) gives the slightly refined estimate [Ix, ff[[ O(

(11)

In particular,

An,p := max {llf[loo/llfll 10 #f6 span {al, , anI}.

(2) IIx-lloo=O(A,=E).
In the final section we consider two classical cases where explicit bounds are

known for En and An. This allows us to show that for algebraic and trigonometric
moment problems on intervals, if the underlying density is sufficiently smooth and
strictly positive, the estimates x, converge uniformly to

5. The classical algebraic and trigonometric moment problems. We begin by sum-
marizing Corollary 4.13. We consider the problem

minimize I6 (x)

(P,) subject to Is (x )ai dtx O, 1,. ., n,

O<=x Ll(S, tx),

where we suppose log : Loo, and al 1, and we denote the unique optimal solution
by xn. Then Corollary 4.13 states that IIx - 0, providing E,An 0, where En and
An are given by Definitions 4.3 and 4.9, respectively:

E, =min {llf-log glllf span {al,’"", a,}},

A, =max {I]fllo/llfllllOfspan {al,""", a,}}.

We consider two special cases.

Algebraic moment problems. In this case, S [0, 1], z is Lebesgue measure, and
a(s)=s-1, for i= 1,..., n.

THEOREM 5.1. Suppose,for the algebraic momentproblem, that is twice continuously
differentiable and strictly positive. Then

Proof. Since 0<)e C[0, 1], it follows that log)e C[0, 1], so by Jackson’s
theorem [9], for some constant k, E, <- (k/n)o((log )", 1/n), where

to(g, ):-sup{Ig(s)-g(t)l ls-tl<-,,s, t[O, 1]},

is the modulus of continuity. Since co(g,O+)=O for continuous g, the result
follows.
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THEOREM 5.2. For the algebraic moment problem,

n2>=An>_{(n+l)2/4, nodd,
n(n +2)/4, n even.

Proof. For the proof, see 1 ].
COROLLARY 5.3. Suppose, for the algebraic moment problem, that is twice con-

tinuously differentiable and strictly positive. Then the unique optimal solutions xn converge
uniformly to .

Proof. For the proof, see Corollary 4.13 and Theorems 5.1 and 5.2. [3

In fact, a rather more precise version of the above argument, using (12), shows
that if is k times continuously ditterentiable (k_->2) and strictly positive, then
IIXn--,[Io o(nl-k): the relevant Jackson theorem states that in this case E, o(n-k),
while it is shown in [1] that A,2 n. We also see in this case, from Theorem 4.7, that
for any 2 _--< p < +c, IIx, l]p o(n-2k/p). In particular, IIx  11=

In general, the smoother ff is, the more rapidly E, tends to zero. If is analytic
on [0, 1 ], or in other words has an analytic extension to an open subset of the complex
plane containing [0, 1], then E,-->0 linearly: E, O(p") for some constant 0=<p < 1.
If, in fact, ff is an entire function, the convergence is superlinear (see [16]). It follows
from Corollary 4.13 that for analytic, strictly positive in the algebraic moment
problem, ]Ix,-zll-’0 linearly with the same convergence ratio as E, and if 2 is
entire, the convergence is superlinear.

Trigonometric moment problems. In this case, S=[-Tr, r], 27r/x is Lebesgue
measure, and for j 1, 2,. ., a2j (s) cos (js) and a2j+l (s) sin (js).

THEOREM 5.4. Suppose, for the trigonometric moment problem, that is strictly
positive with both and ’ continuous and 27r-periodic. Then, nE2n+l

Proof. By [9], Een+l <- (578/n)to((log )’, 1/n), where again to(.,. is the modulus
of continuity; so the result follows. [3

THEOREM 5.5. For the trigonometric moment problem, 2n + 1 ->_ A2,+1 -> n.

Proof For the proof, see [22].
COROLLARY 5.6. Suppose, for the trigonometric moment problem, that is strictly

positive with both and ’ continuous and 27r-periodic. Then the unique optimal solutions
x, converge uniformly to .

Proof Theorems 5.4 and 5.5 show that

A2,,+lE2,+ _--< (2n + 1)E2,+, -->0,

L2n+2E2n+2 A2n+3E2n+l (2n + 3)E,+ - 0.

Thus A,E,- 0, so the result follows by Corollary 4.13.
In fact, just as in the algebraic case, a more precise version of the above argument

(using the fact that A,+l,2 (2n + 1) 1/2 in this case [22]) shows that if , g’, , ffk)
are continuous and 27r-periodic, with g strictly positive, then I[x,-:[l o(n/2)-k).
Furthermore, Theorem 4.7 shows that for any 2 <_-p < +c, Ilxn gllp O(n-k/P). In
particular, IIx.  zll=

Our approach can be extended to prove similar results for multidimensional
algebraic and trigonometric moment problems. Thus one can consider polynomials
with maximum degree or sum of degrees not exceeding n, etc., on various domains.
This becomes considerably more technical and we choose not to take the matter further
herein.

Note added in proof. Error bounds for the trigonometric case under certain
conditions on (and numerical results) may be found in [23], and bounds for problems
involving some entropies other than the Boltzmann-Shannon entropy appear in [24].
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