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In Memoriam
Jon Borwein: a personal reflection

Borwein at a 2006 summer school in Paseky.

Jon Borwein died on August 2, 2016. His untimely passing
has deprived us all of a singular and brilliant mind and an
inspirational intellectual leader, and I have lost a close per-
sonal friend. Rather than a formal memorial, my words are
a personal reflection on my coauthor (of fifteen papers and
a book [46]), a mentor to whom I owe my career.

Jon’s mathematical breadth and energy make a fascinat-
ing but bewildering picture, extending far beyond traditional
optimization, and challenging to sketch. He delighted in col-
laboration, and many of us knew first-hand his research style:
whirling, exuberant, defamiliarizing, endlessly curious, ele-
gant, scholarly, generous, and honest. He made time for
everyone, no matter their rank or eccentricity. Shortly after
I met Jon, at the height of the public prominence of his work
around pi with his brother Peter, highlighted in their book
[47] and a Scientific American article [48], he remarked to
me how he kept in mind the eminent English mathematician
G.H. Hardy, the sole reader of Ramanujan’s first terse but
prophetic notes.

Early in 1987 Jon had welcomed me to the delightful city
of Halifax, Nova Scotia—then his home. During a two-year
postdoctoral fellowship, I shadowed him closely on his trav-
els. Astonishingly, among his many projects then was a Dic-
tionary of Mathematics [49], and indeed I felt a kind of pro-
saic Boswell to his dizzying Samuel Johnson. In the decade
that followed, we made our independent ways across Canada,
through the University of Waterloo to Simon Fraser Univer-
sity. There, Jon founded the Center for Experimental and
Computational Mathematics, a pioneering base for his inter-
national pre-eminence in experimental mathematics.

Jon laid down many roots. Wikipedia describes him as
a “Scottish mathematician,” born in St Andrews in 1951.
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With his encyclopedic erudition, Jon probably knew John-
son’s poke that “Much may be made of a Scotchman, if he be
caught young”; if he did know, he took it to heart, receiving
his doctorate as a Rhodes Scholar at Oxford. He went on to
spend the core of his career in Canada, where he served as
President of the Canadian Mathematical Society and was
elected a Fellow of the Royal Society of Canada. Along
the way, he was elected a Foreign Member of the Bulgar-
ian Academy of Science, and Fellows of both the American
Association for the Advancement of Science and the Ameri-
can Mathematical Society. He made his final home in 2009
at the University of Newcastle in Australia as Laureate Pro-
fessor and was elected a Fellow of the Australian Academy
of Science.

Jon’s diverse honors make his generous and articulate col-
laborative style all the more striking. He worked and collab-
orated intensely but did not suffer fools gladly. I imagine he
sympathized with another of Johnson’s quips: “Sir, I have
found you an argument; but I am not obliged to find you an
understanding.” He was nonetheless a painstaking and ar-
ticulate stylist and in 1993 won (with his brother Peter and
his long-time collaborator David Bailey) the mathematical
world’s highest honor for exposition, the Chauvenet Prize.
(Sixty years earlier, the winner was G.H. Hardy.)

Jon and his family—his wife, Judi, and two young daugh-
ters, Rachel and Naomi (their sister Tova being yet to
arrive)—more or less adopted me as a family member when
I arrived in Canada. I essentially lived with them during
month-long visits to Limoges, France (where Jon later re-
ceived an honorary doctorate), to the Technion in Israel,
and to Canberra and Newcastle, Australia. The sheer fun
of that last visit probably inspired the Borweins’ later choice
of adopted home.

Life at the Borweins’ home was an inspiring and exhaust-
ing blur. A typical evening involved prodigious and virtu-
oso culinary feats from Judi, feisty debates from Rachel and
Naomi, and multiple simultaneous media playing at full vol-
ume. At a minimum, these included political news (Jon was
intensely active, politically, serving for a while as treasurer of
the Nova Scotia New Democratic Party), major league base-
ball (another domain of erudition), and music. All gradually
dissolved into large glasses of Scotch (Jon’s Scotchness, like
Healey Willan’s, was mostly “by absorbtion”), and then a
call to arms from Jon to prove some reluctant theorem. The
exuberant and dizzying environment mirrored Jon’s mathe-
matics, a style so appealing it quickly sealed my own career
choice as a mathematician.

Jon left us too soon. I seek some small solace in that
during any of his years, Jon’s ideas were at least twice as
good, twice as fast, twice as many, and twice as well shared
as, say, mine. But for his beloved and devoted family, his
death has been simply shocking and untimely.

Optimization theory was just one of Jon’s arenas; but as
the one I know best, I would like to pick out a few personal
favorites, most from that same era. To Jon’s extraordinary
academic family of collaborators, many of whom I race by
unmentioned, my apologies.

A theme running through much of Jon’s work was his em-
phatic belief in optimization and analysis as a single disci-
pline, often unified through the language of set-valued map-
pings. He recognized early, for example, the importance
of characterizing “metric regularity” for constraint systems
[50]–now commonly known as “error bounds,” stably bound-
ing the distance to the feasible region by a multiple of the
constraint error. Such bounds are of widespread interest, in
particular, in the convergence analysis of first-order methods.
Jon and his student Heinz Bauschke used similar ideas in a
deep and long-running study of von Neumann’s alternating
projection algorithm and its relatives [51]. Another theme
underlying much of Jon’s work on the interplay of analysis
and optimization was his extensive use both of proximal anal-
ysis (a technique growing out of viscosity solutions of PDEs
and optimal control) [52] and of generalized derivatives in
surprising contexts, especially Banach space geometry [53].

Perhaps Jon’s most celebrated result in nonsmooth anal-
ysis and optimization is the Borwein-Preiss variational prin-
ciple [54]. A ubiquitous technique throughout variational
mathematics appeals to the existence of a minimizer of a
function. Without some compactness, the argument breaks,
but a famous result of Ekeland rescues it through a small per-
turbation to the original function. Ekeland’s perturbation is,
unfortunately, nonsmooth; but using a deep and surprising
argument, Borwein and Preiss showed that a smooth pertur-
bation will in fact suffice.

Much of Jon’s broader mathematical opus is intertwined
with computation, and he believed fundamentally in the
computer as a tool for mathematical discovery. Many of his
contributions to optimization were, by contrast, conceptual
rather than computational. An interesting exception is the
Barzilai-Borwein method [55], an odd and ingenious non-
monotone gradient-based minimization algorithm that has
attracted growing attention during the big-data-driven resur-
gence of first-order methods.

I cannot resist a nod at my own postdoctoral work with
Jon, much of which grew out of the maximum entropy
methodology for estimating an unknown probability density
from some of its moments. In one of my favorite results from
that period, we showed that a sequence of densities, the kth
of which agreeing with the unknown density up to the first
k moments, need not converge weakly in the space L1, but
nonetheless must do so if each has the maximum possible
Shannon entropy [56, 57].

Jon somehow maintained a fresh, youthful intellectual
style until the end. Sitting on my desktop, dated two weeks
before he died, is his last paper [58], a lovely essay on the
craft of mathematical research. He writes: “I can no longer
resist making some observations... to a young mathemati-
cian... but we are nearly all young longer.” Fortunately, he
shared his advice in the nick of time. His final instruction is
“Above all, be honest.”

The book [46] that Jon and I published together in 2000
has found some popularity, even though we had intended
the material just to be a quick introduction, Chapter 1 of a
serious book. It exists only because I momentarily caught
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up: for a brief and happy time, I could scribe slightly faster
than Jon’s genius could create. The subsequent chapters will
not be done before we meet again.
Adrian Lewis
School of Operations Research and Information Engineering,
Cornell University, USA, adrian.lewis@cornell.edu
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