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Abstract

We consider pricing problems when customers choose among the products according to the
nested logit model and there is a quality consistency constraint on the prices charged for the
products. We consider two types of quality consistency constraints. In the first type of constraint,
there is an inherent ordering between the qualities of the products in a particular nest and the
price for the product of a higher quality level should be larger. In the second type of constraint,
different nests correspond to different quality levels and the price of any product that is in
a nest corresponding to a higher quality level should be larger than the price of any product
that is in a nest corresponding to a lower quality level. The prices of the products are chosen
within a finite set of possible prices. We develop algorithms to find the prices to charge for
the products to maximize the expected revenue obtained from a customer, while adhering to a
quality consistency constraint. Our algorithms are based on solving linear programs whose sizes
scale polynomially with the number of nests, number of products and number of possible prices
for the products. Numerical experiments indicate that our algorithms can effectively compute
the optimal prices even when there is a large number of products in consideration.
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In many retail environments, there are multiple substitutable products that can serve the needs

of a customer and customers make a choice among the available products by comparing them

with respect to attributes such as price, quality, richness of features and durability. When such

substitution possibilities are present, the demand for a product depends not only on its own

attributes, but also on the attributes of the other products, creating interactions between the

demands for different products. Discrete choice models become useful to capture such demand

interactions, since they represent the demand for a particular product as a joint function of the

attributes of all available products. Capturing the interactions between the demands for the

products has recently become more important than ever, as online retailers and travel agencies

bring a large variety of options to customers. Nevertheless, optimization models that try to find

the right prices to charge for the products quickly become complicated when one uses sophisticated

choice models to capture the interaction between the demands for the products. These optimization

models become even more complicated when one tries to impose operational constraints on the

prices charged for the products.

In this paper, we consider pricing problems when customers choose according to the nested logit

model and there is a quality consistency constraint on the prices charged for the products. Under

the nested logit model, the products are grouped into nests. The choice process of the customer

proceeds in two stages. In the first stage, the customer decides either to make a purchase in one of

the nests or to leave the system without making a purchase. In the second stage, if the customer

decides to make a purchase in one of the nests, then the customer chooses one of the products in the

chosen nest. This choice process is shown in Figure 1.a. The customer starts from the root node of

the tree. In the first stage, she chooses one of the nests or the no purchase option. In the second

stage, if she has chosen one of the nests in the first stage, then she selects one of the products in the

chosen nest. In the quality consistency constraint that we impose on the prices, there is an intrinsic

ordering between the qualities of the products. The quality consistency constraint ensures that the

prices charged for the products of higher quality are also larger. The goal is to find the prices to

charge for the products to maximize the expected revenue obtained from a customer, while making

sure that the prices satisfy the quality consistency constraint.

We consider two types of quality consistency constraint. In the first type of constraint, there

is an intrinsic ordering between the qualities of the products in each nest. We refer to this quality

consistency constraint as price ladders inside nests. Figure 1.b illustrates this quality consistency

constraint with three products in each nest and the price of product j in nest i is denoted by pij . The

products in each nest are indexed such that the third product is of higher quality than the second

product in the same nest, which is, in turn, of higher quality than the first product. Therefore,

the price of the third product should be larger than the price of the second product, which should,

in turn, be larger than the price of the first product. There is no dictated ordering between the

qualities or prices of the products in different nest. In the second type of constraint, there is an

intrinsic ordering between the qualities of the nests, but there is no clear ordering between the

qualities of the products in the same nest. We refer to this quality consistency constraint as price
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Figure 1: Nested logit model, price ladders inside nests and price ladders between nests.

ladders between nests. Figure 1.c illustrates this quality consistency constraint with three nests. The

nests are indexed such that the third nest corresponds to a higher quality level than the second

nest, which, in turn, corresponds to a higher quality level than the first nest. So, the price for any

product in the third nest should be larger than the price for any product in the second nest, which

should, in turn, be larger than the price for any product in the first nest. At the end of this section,

we discuss practical situations where such price constraints naturally arise.

Main Results and Contributions. In this paper, we give algorithms to find the optimal prices

to charge under both types of quality consistency constraints. In our setting, there are m nests

and n products in each nest. The price of each product is chosen within a finite set of possible

prices and there are q possible prices for each product. Therefore, the vector of prices charged for

the products in a nest takes values in ℜn and each component of this vector takes one of the q

possible values, which implies that there are O(qn) possible price vectors that we can charge for

the products in a nest. Under price ladders within nests, we show that the optimal price vector to

charge in a nest is one of at most nq candidate price vectors and all of these candidate price vectors

can be constructed by solving a linear program through the parametric simplex method. The linear

program that we use to come up with the candidate price vectors has O(nq) decision variables and

O(nq2) constraints. This result reduces the number of possible price vectors to consider for each

nest from O(qn) to O(nq). However, although the optimal price vector to charge in each nest is one

of O(nq) candidate price vectors, computing the optimal prices to charge over all nests can still

be challenging, since there are O((nq)m) different ways of combining nq candidate price vectors

from m nests. To deal with this difficulty, we give a linear program with O(m) decision variables

and O(mnq) constraints that finds the optimal combination of price vectors to charge in different

nests. Thus, we solve a linear program with O(nq) decision variables and O(nq2) constraints by
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using the parametric simplex method to come up with O(nq) candidate price vectors for each

nest. We find the optimal combination of candidate price vectors to charge in different nests by

solving another linear program with O(m) decision variables and O(mnq) constraints.

Pricing problems under price ladders between nests are considerably more difficult than the

ones under price ladders inside nests since price ladders between nests create interactions between

the prices charged for the products in different nests. Under price ladders between nests, we show

that the optimal price vector to charge in a nest is one of at most nq3 candidate price vectors

and all of these candidate price vectors can be constructed by solving a linear program through

the parametric simplex method. The linear program that we use to come up with the candidate

price vectors has O(nq) decision variables and O(n) constraints. To find the optimal combination

of price vectors to charge in different nests, we give a linear program with O(mq) decision variables

and O(mnq4) constraints. In our numerical experiments, we consider test problems with as many

as m = 6 nests, n = 30 products in each nest and q = 30 possible prices for each product, yielding

a total of 180 products. Under price ladders inside nests, we can compute the optimal prices to

charge for the products in about two seconds, whereas under price ladders between nests, we can

compute the optimal prices in about two minutes.

In addition to providing solution algorithms that find the optimal prices under price ladders

inside nests and between nests, we make practically useful contributions through our formulation

of the pricing problem. In our formulation, the price of each product is chosen within a finite

set of possible prices and the set of possible prices for a product is defined by the modeler. The

modeler can design the set of possible prices for a product to correspond to the prices that are

commonly used in retail, such as prices that end in 99 cents or prices that are in increments of

10 dollars. Furthermore, the nested logit model commonly assumes that there is a parametric

relationship between the attractiveness of a product and its price. For example, it is common to

assume that if the price charged for product j in nest i is pij , then the attractiveness of this product

is given by exp(αij − βij pij), where αij and βij are fixed parameters; see Li and Huh (2011) and

Gallego and Wang (2014). Our formulation of the pricing problem does not assume a parametric

relationship between the attractiveness of a product and its price, allowing the attractiveness of a

product to depend on its price in an arbitrary fashion.

Related Literature. There is a significant amount of work on solving pricing problems under

variants of the multinomial and nested logit models. Under the multinomial logit model, Hanson

and Martin (1996) observe that the expected revenue is not a concave function of the prices for

the products. Song and Xue (2007) and Dong et al. (2009) solve the pricing problem by expressing

the expected revenue as a function of the market shares of the products and showing that the

expected revenue is a concave function of the market shares. Chen and Hausman (2000) and Wang

(2012) give tractable solution methods for joint assortment optimization and pricing problems

under the multinomial logit model, where the set of products offered to customers, as well as

the prices of the offered products, are decision variables. Zhang and Lu (2013) discuss revenue
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management problems, where the prices charged for the products are dynamically adjusted over

time as a function of the remaining time in the selling horizon and the remaining inventory for the

products. Davis et al. (2013) show that pricing problems under the multinomial logit model with a

finite set of possible prices can be formulated as a linear program. Keller et al. (2014) study pricing

problems, where the attractiveness of a product depends on its price in a general fashion and there

are constraints on the expected number of sales for the products.

The literature on solving pricing problems under the nested logit model has recently started

growing. Li and Huh (2011) study pricing problems under the assumption that the products in the

same nest have the same price sensitivity. They show that if the products in the same nest have the

same price sensitivity, then the pricing problem can be formulated as a convex program. Gallego

and Wang (2014) consider the case where the products in the same nest do not necessarily have

the same price sensitivity. They show that the expected revenue function can have multiple local

maxima and show how to find a local maximum of the expected revenue function. The authors

also give sufficient conditions that eliminate multiple local maxima. Rayfield et al. (2013) develop

algorithms for computing solutions with a specified performance guarantee even when there are

multiple local maxima of the expected revenue function. Li and Huh (2013) and Li et al. (2014)

consider pricing problems under the nested logit model, where the choice process proceeds in more

than two stages. The earlier work on pricing problems under the nested logit model does not

consider quality consistency constraints.

Charging quality consistent prices is practically important since such prices convey a sense

of fairness to customers. Rusmevchientong et al. (2006) consider quality consistent pricing

problems. Their work is motivated by a pricing problem in the automobile industry, where the

prices of the automobiles with richer features should also be larger. They use a nonparametric

choice model, show that the corresponding pricing problem with a quality consistency constraint is

NP hard and provide an approximation algorithm. Gallego and Stefanescu (2009) discuss fairness

issues when providing upgrades to customers. In the context of airline industry, they point out

that if the customers need to be upgraded, then the customers with low fare class reservations

should be upgraded to a relatively lower fare class, when compared with the customers with high

fare class reservations. They develop fluid models for revenue management problems with upgrade

possibilities. They show that if the prices satisfy a certain quality consistency constraint, then

their model upgrades customers with low fare class reservations to a relatively lower fare class,

when compared with the customers with high fare class reservations.

We work with two different types of quality consistency constraint. In the first type of quality

consistency constraint, there is an intrinsic ordering between the qualities of the products in the

same nest and the prices for the products of higher quality should also be larger. As an example

of a situation where this type of quality consistency constraint becomes relevant, we consider the

case where the nests correspond to different brands and the products within a particular nest

correspond to the variants of a particular brand with different qualities. There is a verifiable
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ordering between the qualities of the different variants of a particular brand and the customers

expect that the prices for the variants of higher quality should also be larger. On the other hand,

it is difficult to compare the variants of different brands in terms of quality and there is no reason

for the customers to expect a particular ordering between the prices for the variants of different

brands. In the second type of quality consistency constraint, different nests correspond to different

quality levels and there is an intrinsic ordering between the quality levels of the nests. The price

for any product in a nest corresponding to a higher quality level should be larger than the price

for any product in a nest corresponding to a lower quality level. As an example of a situation

where this type of quality consistency constraint becomes relevant, we consider the case where the

nests correspond to different quality levels and the products within a particular nest correspond

to products that differ in cosmetic or personal features, such as color. The customers expect that

the prices for the products in a nest corresponding to a higher quality level are larger than the

prices for the products in a nest corresponding to a lower quality level, but there is no reason for

the customers to expect a particular ordering between the prices for the products in a particular

nest since these products differ in cosmetic or personal features. Although the two types of quality

consistency constraints cover a variety of useful situations, we observe that there can be other

quality consistency constraints that are not covered by our results. In our conclusions, we discuss

some possible extensions of our quality consistency constraints.

A useful approach for solving optimization problems under the nested logit model is to construct

a small collection of candidate solutions for each nest and to solve a linear program to combine

the candidate solutions for the different nests. Gallego and Topaloglu (2014) and Feldman and

Topaloglu (2014) follow this approach for assortment optimization problems, where the prices of

the products are fixed and the goal is to find a set of products to offer to customers to maximize the

expected revenue obtained from a customer. The development in this paper is based on this general

approach as well, but there are two important challenges that need to be overcome when using this

approach for pricing problems. First, constructing a small collection of candidate price vectors to

charge in each nest carefully exploits the structure of the pricing problem. In particular, we make

use of the fact that the attractiveness of a product is decreasing in its price and it is not clear how

to construct a small collection of candidate price vectors when the attractiveness of a product is not

necessarily decreasing in its price. Second, under price ladders between nests, the prices charged

in different nests interact with each other since the price for any product in a nest corresponding

to a higher quality level should be larger than the price for any product in a nest corresponding to

a lower quality level. Due to the interactions between the prices charged in different nests, finding

the optimal combination of price vectors to choose in each nest becomes difficult. We address this

difficulty by using the linear programming formulation of a dynamic program that finds the best

combination of the candidate price vectors for the different nests.

The rest of the paper is organized as follows. In Section 1, we study the pricing problem under

price ladders inside nests. In Section 2, we study the pricing problem under price ladders between

nests. In Section 3, we provide numerical experiments. In Section 4, we conclude.
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1 Price Ladders Inside Nests

In this section, we consider the case with price ladders inside nests. In this setting, there is

an intrinsic ordering between the qualities of the products in the same nest and the prices for the

products of higher quality should also be larger. There is no intrinsic ordering between the qualities

or the prices of the products in different nests.

1.1 Problem Formulation

There are m nests and we index the nests by M = {1, . . . ,m}. In each nest, there are n products

and we index the products in each nest by N = {1, . . . , n}. For each product, there are q possible

prices. The possible prices for a product are given by Θ = {θ1, . . . , θq}. Without loss of generality,

we index the possible prices so that 0 < θ1 < θ2 < . . . < θq. We use pij ∈ Θ to denote the price

that we charge for product j in nest i. If we charge price pij for product j in nest i, then the

preference weight of this product is given by vij(pij). If we charge a larger price for a product, then

its preference weight becomes smaller, implying that vij(θ
1) > vij(θ

2) > . . . > vij(θ
q) > 0. Our

notation so far implies that the number of products in each nest is the same and the set of possible

prices that we can charge for each product is the same. However, this assumption is only for

notational brevity and our results in the paper continue to hold with straightforward modifications

when there are different numbers of products in different nests and the sets of possible prices for

the different products are different.

We use pi = (pi1, . . . , pin) ∈ Θn to capture the price vector charged in nest i. As a function

of the price vector pi charged in nest i, we use Vi(pi) to denote the total preference weight of the

products in nest i, so that Vi(pi) =
∑

j∈N vij(pij). Under the nested logit model, if we charge the

price vector pi in nest i, then a customer that has already decided to make a purchase in nest i

chooses product j in this nest with probability vij(pij)/Vi(pi). In this case, if we charge the price

vector pi in nest i and a customer has already decided to make a purchase in this nest, then the

expected revenue obtained from this customer is given by

Ri(pi) =
∑
j∈N

pij
vij(pij)

Vi(pi)
=

∑
j∈N pij vij(pij)

Vi(pi)
. (1)

For each nest i, the nested logit model has a parameter γi ∈ [0, 1] characterizing the degree of

dissimilarity between the products in this nest. We use v0 to denote the preference weight of the no

purchase option. Under the nested logit model, if we charge the price vectors (p1, . . . , pm) ∈
Θm×n over all nests, then a customer decides to make a purchase in nest i with probability

Qi(p1, . . . , pm) = Vi(pi)
γi/(v0 +

∑
l∈M Vl(pl)

γl). The last expression provides the probability that

a customer chooses nest i as a function of the prices charged for all products in all nests. The

parameter γi magnifies or dampens the preference weights of the products in nest i.

According to the nested logit model, if we charge the price vectors (p1, . . . , pm) over all

nests, then a customer decides to make a purchase in nest i with probability Qi(p1, . . . , pm) =
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Vi(pi)
γi/(v0 +

∑
l∈M Vl(pl)

γl). If the customer decides to make a purchase in nest i, then the

expected revenue obtained from this customer is Ri(pi). Thus, if we charge the price vectors

(p1, . . . , pm) over all nests, then the expected revenue from a customer is given by

Π(p1, . . . , pm) =
∑
i∈M

Qi(p1, . . . , pm)Ri(pi) =

∑
i∈M Vi(pi)

γi Ri(pi)

v0 +
∑

i∈M Vi(pi)γi
. (2)

Our goal is to find the price vectors (p1, . . . , pm) to charge over all nests to maximize the expected

revenue above subject to the constraint that the price vector charged in each nest satisfies a price

ladder constraint. To formulate the price ladder constraint, without loss of generality, we index the

products in each nest such that products with larger indices are of higher quality. In other words,

the products N = {1, . . . , n} in each nest are indexed in the order of increasing quality. The price

ladder constraint ensures that the price for a product of higher quality is larger. That is, the price

ladder constraint in nest i ensures that pi1 ≤ pi2 ≤ . . . ≤ pin. Thus, the set of feasible price vectors

in nest i can be written as Fi = {pi ∈ Θn : pij ≥ pi,j−1 ∀ j ∈ N \ {1}}. We want to find the price

vectors to charge over all nests to maximize the expected revenue from a customer while satisfying

the price ladder constraint, yielding the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Fi ∀ i ∈ M

{
Π(p1, . . . , pm)

}
. (3)

In the problem above, the price of each product takes values in the discrete set Θ. Furthermore,

the objective function depends on the prices of the products in a nonlinear fashion. Thus, this

problem is a nonlinear combinatorial optimization problem.

We emphasize two useful advantages of our formulation of problem (3). First, since the price

for each product is chosen among a set of possible prices given by Θ and we can design Θ in any

way we want, our formulation allows choosing the prices of the products among the prices that are

commonly used in retail, such as prices that end in 99 cents or prices that are in increments of 10

dollars. Second, the nested logit model commonly assumes a fixed functional relationship between

the price of a product and its preference weight. For example, as a function of the price pij of

product j in nest i, it is common to assume that the preference weight vij(pij) of this product

is given by vij(pij) = exp(αij − βij pij), where αij and βij are fixed parameters. In contrast, our

formulation of problem (3) does not rely on such a fixed functional relationship and we allow the

dependence between vij(pij) and pij to be arbitrary, as long as vij(pij) is decreasing in pij .

1.2 Connection to a Fixed Point Representation

In this section, we answer a question that becomes critical when developing a tractable solution

approach for problem (3). Assume that we have a collection of candidate price vectors Pi =

{pti : t ∈ Ti} to charge in nest i and all of the price vectors in the collection Pi satisfy the price

ladder constraint in the sense that pti ∈ Fi for all t ∈ Ti. We know that we can stitch together

an optimal solution to problem (3) by picking one price vector from each one of the candidate
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collections P1, . . . ,Pm. In other words, we know that there exists an optimal solution (p∗1, . . . , p
∗
m)

to problem (3) that satisfies p∗i ∈ Pi for all i ∈M . The question that we want to answer is how we

can pick a price vector p∗i from the collection Pi for each nest i such that the solution (p∗1, . . . , p
∗
m) is

indeed optimal to problem (3). It is difficult to answer this question through complete enumeration

since complete enumeration requires checking the expected revenues from |P1|× . . .×|Pm| possible
solutions, which quickly gets intractable when the number of nests is large. To answer this question,

we relate problem (3) to the problem of computing the fixed point of an appropriately defined

function. In particular, for z ∈ ℜ+, we define f(z) as

f(z) =
∑
i∈M

max
pi∈Pi

{
Vi(pi)

γi (Ri(pi)− z)
}
. (4)

The value of ẑ satisfying v0 ẑ = f(ẑ) is the fixed point of the function f(·)/v0. Since v0 z is increasing
and f(z) is decreasing in z with f(0) ≥ 0, there exists ẑ satisfying v0 ẑ = f(ẑ). In the next theorem,

we show that we can use this value of ẑ to construct an optimal solution to problem (3). In this

theorem, we recall that z∗ corresponds to the optimal objective value of problem (3).

Theorem 1 Assume that we have a collection of candidate price vectors Pi for each nest i such

that we can stitch together an optimal solution to problem (3) by picking one price vector from each

one of the collections P1, . . . ,Pm. Let the value of ẑ be such that v0 ẑ = f(ẑ) and p̂i be an optimal

solution to the problem

max
pi∈Pi

{
Vi(pi)

γi (Ri(pi)− ẑ)
}
. (5)

Then, we have Π(p̂1, . . . , p̂m) ≥ z∗.

Proof. We use (p∗1, . . . , p
∗
m) to denote an optimal solution to problem (3). By our assumption, we can

stitch together an optimal solution to problem (3) by picking one price vector from each one of the

collections P1, . . . ,Pm. Thus, we can assume that p∗i ∈ Pi for all i ∈M , which implies that solution

p∗i is feasible to the problem on the right side of (4) and we get f(ẑ) ≥
∑

i∈M Vi(p
∗
i )

γi (Ri(p
∗
i )−ẑ). In

this case, noting the fact that v0 ẑ = f(ẑ), we have v0 ẑ ≥
∑

i∈M Vi(p
∗
i )

γi (Ri(p
∗
i )− ẑ). Solving for

ẑ in the last inequality, we obtain ẑ ≥
∑

i∈M Vi(p
∗
i )

γi Ri(p
∗
i )/(v0 +

∑
i∈M Vi(p

∗
i )

γi). Noting that

z∗ = Π(p∗1, . . . , p
∗
m) =

∑
i∈M Vi(p

∗
i )

γi Ri(p
∗
i )/(v0 +

∑
i∈M Vi(p

∗
i )

γi) by the definition of Π(p1, . . . , pm)

in (2), the last inequality implies that ẑ ≥ z∗. Thus, to finish the proof, it is enough to show that

Π(p̂1, . . . , p̂m) = ẑ. Since p̂i is an optimal solution to problem (5), by the definition of f(z) in

(4) and the fact that v0 ẑ = f(ẑ), we have v0 ẑ = f(ẑ) =
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − ẑ). In this

case, focusing on the first and last expressions in the last chain of equalities and solving for ẑ, we

obtain ẑ =
∑

i∈M Vi(p̂i)
γi Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi) and the desired result follows by noting that

Π(p̂1, . . . , p̂m) =
∑

i∈M Vi(p̂i)
γi Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi). �

Theorem 1 suggests the following approach to obtain an optimal solution to problem (3). Assume

that we have a collection of candidate price vectors Pi = {pti : t ∈ Ti} for each nest i such that
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we can stitch together an optimal solution to problem (3) by picking one price vector from each

one of the collections P1, . . . ,Pm. Furthermore, assume that each one of the price vectors in the

candidate collection Pi = {pti : t ∈ Ti} satisfies the price ladder constraint in the sense that pti ∈ Fi

for all pti ∈ Pi. To obtain an optimal solution to problem (3), we find the value of ẑ that satisfies

v0 ẑ = f(ẑ). In this case, if we let p̂i be an optimal solution to problem (5), then it follows from

Theorem 1 that Π(p̂1, . . . , p̂m) ≥ z∗. Furthermore, since pti ∈ Fi for all pti ∈ Pi, the solution

(p̂1, . . . , p̂m) is feasible to problem (3). Therefore, (p̂1, . . . , p̂m) is a feasible solution to problem (3)

and provides an objective value to problem (3) that is at least as large as the optimal objective

value of this problem, which implies that (p̂1, . . . , p̂m) is an optimal solution to problem (3), as

desired. We observe that the discussion in this paragraph also provides an answer to the question

that we ask at the beginning of this section. In particular, if we know that we can stitch together

an optimal solution to problem (3) by picking one price vector from each one of the collections

P1, . . . ,Pm, then we can use Theorem 1 to obtain an optimal solution to problem (3).

One remaining question is how we can find the value of ẑ that satisfies v0 ẑ = f(ẑ) in a tractable

fashion. Noting that v0 z is increasing and f(z) is decreasing in z, we can find the value of ẑ that

satisfies v0 ẑ = f(ẑ) by solving the problem min{z : v0 z ≥
∑

i∈M maxpi∈Pi Vi(pi)
γi (Ri(pi)− z)},

where the decision variable is z. The constraint in this problem is nonlinear in z, but we can linearize

the constraint by using the additional decision variables y = (y1, . . . , ym) with the interpretation

that yi = maxpi∈Pi Vi(pi)
γi (Ri(pi) − z). In this case, we can find the value of ẑ that satisfies

v0 ẑ = f(ẑ) by solving the problem

min

{
z : v0 z ≥

∑
i∈M

yi, yi ≥ Vi(pi)
γi (Ri(pi)− z) ∀ pi ∈ Pi, i ∈M

}
, (6)

where the decision variables are (z, y). The problem above is a linear program with O(m) decision

variables and
∑

i∈M O(|Pi|) constraints, which is tractable as long as the numbers of price vectors

in the collections P1, . . . ,Pm are relatively small. In the rest of our discussion, we focus on how

to construct a small collection of candidate price vectors Pi for each nest i such that we can

stitch together an optimal solution to problem (3) by picking one price vector from each one of the

collections P1, . . . ,Pm. Once we have these collections, we can solve problem (6) to find ẑ satisfying

v0 ẑ = f(ẑ) and we can use Theorem 1 to obtain an optimal solution to problem (3).

1.3 Characterizing Candidate Price Vectors

In this section, we give a characterization of the optimal price vector to charge in each nest. This

characterization ultimately becomes useful to construct a collection of candidate price vectors Pi

for each nest i such that we can stitch together an optimal solution to problem (3) by picking one

price vector from each one of the collections P1, . . . ,Pm. In the next lemma, we begin by giving

a simple condition for a solution to provide an objective value for problem (3) that is at least as

large as the optimal objective value. Subsequent to this lemma, we build on this condition to give

a characterization of the optimal price vector to charge in each nest.
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Lemma 2 Let (p∗1, . . . , p
∗
m) be an optimal solution to problem (3) providing the objective value

z∗. If (p̂1, . . . , p̂m) satisfies

Vi(p̂i)
γi (Ri(p̂i)− z∗) ≥ Vi(p

∗
i )

γi (Ri(p
∗
i )− z∗)

for all i ∈M , then we have Π(p̂1, . . . , p̂m) ≥ z∗.

Proof. Adding the inequality in the lemma over all i ∈ M yields
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − z∗) ≥∑

i∈M Vi(p
∗
i )

γi (Ri(p
∗
i )− z∗). Since (p∗1, . . . , p

∗
m) is an optimal solution to problem (3), we have

z∗ =
∑

i∈M Vi(p
∗
i )

γiRi(p
∗
i )/(v0 +

∑
i∈M Vi(p

∗
i )

γi). Arranging the terms in this equality, we obtain

v0 z
∗ =

∑
i∈M Vi(p

∗
i )

γi (Ri(p
∗
i ) − z∗), in which case, it follows that

∑
i∈M Vi(p̂i)

γi (Ri(p̂i) − z∗) ≥∑
i∈M Vi(p

∗
i )

γi (Ri(p
∗
i )−z∗) = v0 z

∗. Focusing on the first and last terms in this chain of inequalities

and solving for z∗, we get
∑

i∈M Vi(p̂i)
γiRi(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi) ≥ z∗ and the desired result

follows by noting that Π(p̂1, . . . , p̂m) =
∑

i∈M Vi(p̂i)
γiRi(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi). �

In the next theorem, we build on the condition given in Lemma 2 to give a characterization of

the optimal price vector to charge in each nest.

Theorem 3 Let (p∗1, . . . , p
∗
m) be an optimal solution to problem (3) providing the objective value

z∗ and set u∗i = max{γi z∗ + (1− γi)Ri(p
∗
i ), z

∗}. If p̂i is an optimal solution to the problem

max
pi∈Fi

{
Vi(pi) (Ri(pi)− u∗i )

}
, (7)

then (p̂1, . . . , p̂m) is an optimal solution to problem (3).

Proof. For notational brevity, we let R∗
i = Ri(p

∗
i ), V

∗
i = Vi(p

∗
i ), R̂i = Ri(p̂i) and V̂i = Vi(p̂i). We

claim that V̂ γi
i (R̂i−z∗) ≥ (V ∗

i )
γi (R∗

i −z∗) for all i ∈M . To see this claim, we consider a nest i that

satisfies R∗
i ≥ z∗. Since p∗i is a feasible but not necessarily an optimal solution to problem (7), we

have V̂i (R̂i − u∗i ) ≥ V ∗
i (R∗

i − u∗i ). Since R
∗
i ≥ z∗, we have u∗i = γi z

∗ + (1− γi)R
∗
i by the definition

of u∗i and plugging this value of u∗i into the last inequality yields V̂i (R̂i−z∗)−(1−γi) V̂i (R∗
i −z∗) ≥

γi V
∗
i (R∗

i − z∗). Arranging the terms in the last inequality, we obtain

R̂i − z∗ ≥
[
γi
V ∗
i

V̂i
+ (1− γi)

]
(R∗

i − z∗). (8)

Noting that the dissimilarity parameter for nest i satisfies γi ∈ [0, 1], the function xγi is concave

in x and its derivative at point 1 is γi. Therefore, the subgradient inequality at point 1 yields

xγi ≤ 1 + γi (x − 1) = γi x + (1 − γi) for all x ∈ ℜ+. Using the subgradient inequality with

x = V ∗
i /V̂i, it follows that (V

∗
i /V̂i)

γi ≤ γi (V
∗
i /V̂i) + 1− γi. In this case, since R∗

i ≥ z∗, (8) implies

that R̂i−z∗ ≥ (V ∗
i /V̂i)

γi (R∗
i −z∗) and arranging the terms in this inequality yields V̂ γi

i (R̂i−z∗) ≥
(V ∗

i )
γi (R∗

i − z∗). Therefore, the claim holds for each nest i that satisfies R∗
i ≥ z∗.

We consider a nest i that satisfies R∗
i < z∗. Since θq is the largest possible price for a product,

the optimal expected revenue in problem (3) does not exceed θq and we obtain z∗ ≤ θq. We
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define the solution p̃i = (p̃i1, . . . , p̃in) to problem (7) as p̃ij = θq for all j ∈ N , which is feasible to

this problem. Furthermore, (1) implies that Ri(p̃i) =
∑

j∈N θq vij(p̃ij)/
∑

j∈N vij(p̃ij) = θq. Since

R∗
i < z∗, we have u∗i = z∗ by the definition of u∗i and we obtain V̂i (R̂i − z∗) = V̂i (R̂i − u∗i ) ≥

Vi(p̃i) (Ri(p̃i) − u∗i ) = Vi(p̃i) (Ri(p̃i) − z∗) ≥ 0 > V ∗
i (R∗

i − z∗), where the first inequality uses the

fact that p̃i is a feasible but not necessarily an optimal solution to problem (7), the second inequality

uses the fact that Ri(p̃i) = θq ≥ z∗ and the third inequality uses the fact that R∗
i < z∗. Thus, we

have V̂i (R̂i − z∗) ≥ 0 > V ∗
i (R∗

i − z∗), which implies that V̂ γi
i (R̂i − z∗) ≥ 0 > (V ∗

i )
γi (R∗

i − z∗),

establishing the claim for each nest i that satisfies R∗
i < z∗.

The discussion in the previous two paragraphs shows that our claim holds and we obtain

V̂ γi
i (R̂i − z∗) ≥ (V ∗

i )
γi (R∗

i − z∗) for all i ∈ M . In this case, the solution (p̂1, . . . , , p̂m) satisfies

the assumption of Lemma 2 and it follows from this lemma that Π(p̂1, . . . , p̂m) ≥ z∗. On the other

hand, noting that p̂i is a feasible solution to problem (7), we have p̂i ∈ Fi for all i ∈ M , which

indicates that (p̂1, . . . , p̂m) is a feasible solution to problem (3). The solution (p̂1, . . . , p̂m) is feasible

to problem (3) and it provides an objective value for problem (3) that is at least as large as the

optimal objective value of this problem. Therefore, we conclude that (p̂1, . . . , p̂m) is an optimal

solution to problem (3), as desired. �

By Theorem 3, we can recover an optimal solution to problem (3) by solving problem (7) for

all i ∈M . Thus, if we let p̂i be an optimal solution to problem (7) and use the singleton Pi = {p̂i}
as the collection of candidate price vectors to charge in nest i, then we can stitch together an

optimal solution to problem (3) by picking one price vector from each one of the collections

P1, . . . ,Pm. However, this approach is not immediately useful for constructing a collection of

candidate price vectors, since solving problem (7) requires the knowledge of u∗i , which, in turn,

requires the knowledge of an optimal solution to problem (3). To get around this difficulty, as a

function of ui ∈ ℜ+, we use p̂i(ui) to denote an optimal solution to the problem

max
pi∈Fi

{
Vi(pi) (Ri(pi)− ui)

}
. (9)

In this case, we observe that if we use the collection of price vectors Pi = {p̂i(ui) : ui ∈ ℜ+}
as the collection of candidate price vectors for nest i, then we can stitch together an optimal

solution to problem (3) by picking one price vector from each one of the collections P1, . . . ,Pm. To

see this result, letting u∗i be as defined in Theorem 3, we note that p̂i(u
∗
i ) ∈ {p̂i(ui) : ui ∈ ℜ+}

for all i ∈ M . Furthermore, since problem (9) with ui = u∗i is identical to problem (7), by

Theorem 3, the solution (p̂1(u
∗
1), . . . , p̂m(u∗m)) is optimal to problem (3). Therefore, for each nest i,

the solution (p̂1(u
∗
1), . . . , p̂m(u∗m)) uses one price vector from the collection of candidate price vectors

Pi = {p̂i(ui) : ui ∈ ℜ+} and this solution is optimal to problem (3).

We propose using {p̂i(ui) : ui ∈ ℜ+} as the collection of candidate price vectors for nest i, which

is the collection of optimal solutions to problem (9) for any value of ui ∈ ℜ+. In the subsequent

sections, we show that the collection {p̂i(ui) : ui ∈ ℜ+} includes a reasonably small number of price

vectors and we can find these price vectors in a tractable fashion.
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1.4 Counting Candidate Price Vectors

In this section, we show that there exists a collection of price vectors Pi = {pti : t ∈ Ti} such that

this collection includes an optimal solution to problem (9) for any value of ui ∈ ℜ+ and there are

at most nq price vectors in this collection, where n is the number of products in a nest and q is the

number of possible price levels. The fact that the objective function of problem (9) has a simple

form plays an especially important role in this result. In particular, using the definitions of Vi(pi)

and Ri(pi), we can write problem (9) equivalently as

max
pi∈Fi

{∑
j∈N

vij(pij)
[∑

j∈N pij vij(pij)∑
j∈N vij(pij)

− ui

]}
= max

pi∈Fi

{∑
j∈N

(pij − ui) vij(pij)

}
. (10)

In the next lemma, we begin by showing that as the value of ui in problem (10) gets larger, then

the optimal price for each product also gets larger.

Lemma 4 Using p̂i(ui) = (p̂i1(ui), . . . , p̂in(ui)) to denote an optimal solution to problem (10) as a

function of ui, if we have u−i < u+i , then it holds that p̂ij(u
−
i ) ≤ p̂ij(u

+
i ) for all j ∈ N .

Proof. To get a contradiction, assume that u−i < u+i but we have p̂ij(u
−
i ) > p̂ij(u

+
i ) for some

j ∈ N . For notational brevity, we let p̂−i = p̂i(u
−
i ) and p̂+i = p̂i(u

+
i ). Since the solutions p̂−i and

p̂+i are optimal to problem (10) when this problem is solved at particular values of ui, we have

p̂−i ∈ Fi and p̂
+
i ∈ Fi, which is to say that p̂−i1 ≤ p̂−i2 ≤ . . . ≤ p̂−in and p̂+i1 ≤ p̂+i2 ≤ . . . ≤ p̂+in. We let

J = {j ∈ N : p̂−ij > p̂+ij}, which in nonempty by the assumption that p̂−ij > p̂+ij for some j ∈ N .

We define the solution p̃i = (p̃i1, . . . , p̃in) to problem (10) as p̃ij = p̂−ij ∨ p̂+ij for all j ∈ N ,

where we use a ∨ b = max{a, b}. If f(j) and g(j) are both increasing functions of j ∈ N , then

f(j) ∨ g(j) is also an increasing function of j ∈ N . By the discussion at the end of the previous

paragraph, p̂−ij and p̂+ij are both increasing functions of j ∈ N . Thus, p̃ij = p̂−ij ∨ p̂+ij is also an

increasing function of j ∈ N , which implies that p̃i1 ≤ p̃i2 ≤ . . . ≤ p̃in. Therefore, we have p̃i ∈ Fi,

indicating that p̃i is a feasible solution to problem (10). In this case, since p̂+i is an optimal solution

to problem (10) when we solve this problem with ui = u+i , we have
∑

j∈N (p̂+ij − u+i ) vij(p̂
+
ij) ≥∑

j∈N (p̃ij − u+i ) vij(p̃ij). By the definitions of J and p̃i, we have p̃ij = p̂−ij for all j ∈ J and

p̃ij = p̂+ij for all j ̸∈ J . Thus, the last inequality can be written as
∑

j∈N (p̂+ij − u+i ) vij(p̂
+
ij) ≥∑

j∈J (p̂
−
ij − u+i ) vij(p̂

−
ij) +

∑
j ̸∈J(p̂

+
ij − u+i ) vij(p̂

+
ij), in which case, canceling the common terms on

the two sides of the inequality, we have
∑

j∈J(p̂
+
ij − u+i ) vij(p̂

+
ij) ≥

∑
j∈J(p̂

−
ij − u+i ) vij(p̂

−
ij).

We define the solution p̄i = (p̄i1, . . . , p̄in) to problem (10) as p̄ij = p̂+ij ∧ p̂
−
ij for all j ∈ N , where

we use a ∧ b = min{a, b}. We note that if f(j) and g(j) are both increasing functions of j ∈ N ,

then f(j) ∧ g(j) is also an increasing function of j ∈ N . In this case, using the same approach

in the previous paragraph, we can show that p̄i ∈ Fi. Thus, since p̂−i is an optimal solution

to problem (10) when we solve this problem with ui = u−i , we have
∑

j∈N (p̂−ij − u−i ) vij(p̂
−
ij) ≥∑

j∈N (p̄ij − u−i ) vij(p̄ij). Noting the definitions of J and p̄i, the last inequality can equivalently be
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written as
∑

j∈N (p̂−ij−u
−
i ) vij(p̂

−
ij) ≥

∑
j∈J(p̂

+
ij−u

−
i ) vij(p̂

+
ij)+

∑
j ̸∈J(p̂

−
ij−u

−
i ) vij(p̂

−
ij), in which case,

canceling the common terms on the two sides of the inequality yields
∑

j∈J(p̂
−
ij − u−i ) vij(p̂

−
ij) ≥∑

j∈J(p̂
+
ij − u−i ) vij(p̂

+
ij). From the previous paragraph, we also have

∑
j∈J(p̂

+
ij − u+i ) vij(p̂

+
ij) ≥∑

j∈J(p̂
−
ij − u+i ) vij(p̂

−
ij). Adding the last two inequalities and canceling the common terms yield

u−i
∑

j∈J(vij(p̂
+
ij)− vij(p̂

−
ij)) ≥ u+i

∑
j∈J(vij(p̂

+
ij)− vij(p̂

−
ij)).

By the definition of J , we have p̂−ij > p̂+ij for all j ∈ J . Noting that the preference weight of a

product gets larger as we charge a smaller price for the product, we have vij(p̂
−
ij) < vij(p̂

+
ij) for all

j ∈ J . Thus, we have
∑

j∈J(vij(p̂
+
ij)− vij(p̂

−
ij)) > 0, in which case, by the inequality at the end of

the previous paragraph, we obtain u−i ≥ u+i , which is a contradiction. �

We observe that the last step in the proof of Lemma 4 critically depends on the assumption

that vij(pij) is a decreasing function of pij . Also, it is worthwhile to note that Lemma 4 holds even

when there are multiple optimal solutions to problem (10) and we choose p̂i(ui) as any one of these

solutions. In the next theorem, we use Lemma 4 to show that there exists a collection of at most

nq price vectors such that this collection includes an optimal solution to problem (10) for any value

of ui ∈ ℜ+. The intuition behind this result is that if we increase the value of ui in problem (10),

then Lemma 4 implies that the price of a product in an optimal solution either does not change or

becomes larger. Since there are q possible prices for a product, the price of a product will no longer

change after a small number of price changes.

Theorem 5 There exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (10) for any value of ui ∈ ℜ+.

Proof. Assume that there are K distinct values of ui ∈ ℜ+ such that if we solve problem (10) with

each one of these values, then we obtain a distinct optimal solution. We use {ûki : k = 1, . . . ,K} to

denote these values of ui ∈ ℜ+ and use p̂ki to denote an optimal solution to problem (10) when we

solve this problem with ui = ûki . By our assumption, none of price vectors in {p̂ki : k = 1, . . . ,K}
are equal to each other. To get a contradiction, assume that K > nq. Without loss of generality,

we index the values {ûki : k = 1, . . . ,K} such that û1i < û2i < . . . < ûKi , in which case, Lemma 4

implies that p̂1ij ≤ p̂2ij ≤ . . . ≤ p̂Kij for all j ∈ N . Since the price vectors {p̂ki : k = 1, . . . ,K} are

distinct, using 1(·) to denote the indicator function, we have
∑

j∈N 1(p̂kij < p̂k+1
ij ) > 1, indicating

that there is at least one different price in the price vectors p̂ki and p̂k+1
i . Adding the last inequality

over all k = 1, . . . ,K−1 and noting that K > nq, we obtain
∑

j∈N
∑K−1

k=1 1(p̂kij < p̂k+1
ij ) > K−1 ≥

nq. Focusing on the first and last terms in the last chain of inequalities, since |N | = n, it must

be the case that
∑K−1

k=1 1(p̂kij < p̂k+1
ij ) > q for some j ∈ N , which implies that more than q of the

inequalities p̂1ij ≤ p̂2ij ≤ . . . ≤ p̂Kij are strict, but since there are q possible values for the price of a

product, more than q of these inequalities cannot be strict and we obtain a contradiction. �

Thus, there exists a reasonably small collection of price vectors that includes an optimal solution

to problem (10) for any ui ∈ ℜ+. In the next section, we show how to construct this collection.
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1.5 Constructing Candidate Price Vectors

In the previous section, we show that there exists a collection of price vectors with at most nq price

vectors in it such that this collection includes an optimal solution to problem (10) for any value of

ui ∈ ℜ+. In this section, we show how to come up with this collection in a tractable fashion. In

problem (10), if we charge the price pij for product j in nest i, then we obtain a contribution of

(pij − ui) vij(pij). By the constraint pi ∈ Fi, the price charged for product j should be at least

as large as the price charged for product j − 1. Problem (10) finds the prices to charge for the

products in nest i to maximize the total contribution. So, we can solve problem (10) by using a

dynamic program. The decision epochs are the products in nest i. When making the decision for

product j in nest i, the state variable is the price for product j − 1. Thus, for a fixed value of

ui ∈ ℜ+, we can solve problem (10) by using the dynamic program

Φij(pi,j−1 |ui) = max
pij ∈ Θ :

pij ≥ pi,j−1

{
(pij − ui) vij(pij) + Φi,j+1(pij |ui)

}
, (11)

with the boundary condition that Φi,n+1(· |ui) = 0. The optimal objective value of problem (10)

is given by Φi1(θ
1 |ui), where the value functions {Φij(pi,j−1 |ui) : pi,j−1 ∈ Θ, j ∈ N} are obtained

through the dynamic program in (11). By Theorem 5, there are most nq solutions from the dynamic

program in (11) such that the solution from this dynamic program for any value of ui ∈ ℜ+ is one

of these nq solutions. The question is how to come up with these solutions.

To answer this question, we use the linear programming formulation of the dynamic program

in (11). Dynamic programs with finite state and action spaces have equivalent linear programming

formulations; see Puterman (1994). In these linear programs, there is one decision variable for each

state and decision epoch and there is one constraint for each state, action and decision epoch. The

linear program corresponding to the dynamic program in (11) is given by

min ϕi1(θ
1) (12)

s.t. ϕij(pi,j−1) ≥ (pij − ui) vij(pij) + ϕi,j+1(pij) ∀ pi,j−1 ∈ Θ, pij ∈ L(pi,j−1), j ∈ N,

where the decision variables are {ϕij(pi,j−1) : pi,j−1 ∈ Θ, j ∈ N} and we follow the convention that

ϕi,n+1(pin) = 0 for all pin ∈ Θ. The set L(pi,j−1) is the set of feasible prices for product j given

that the price for product j−1 is pi,j−1, which is given by L(pi,j−1) = {pij ∈ Θ : pij ≥ pi,j−1}. If we
solve the linear program in (12), then the optimal value of the decision variable ϕi1(θ

1) is equal to

Φi1(θ
1 |ui) obtained through the dynamic program in (11), which is, in turn, equal to the optimal

objective value of problem (10). The critical observation is that the value of ui ∈ ℜ+ only affects

the right hand side coefficients of the constraints in problem (12). Therefore, we can vary ui ∈ ℜ+

parametrically and solve problem (12) by using the parametric simplex method to generate the

possible optimal solutions to this problem for all values of ui ∈ ℜ+. These solutions provide the

solutions to the dynamic program in (11) for all values of ui ∈ ℜ+.

Since there are q possible prices for a product and there are n products in a nest, the linear

program in (12) has O(nq) decision variables and O(nq2) constraints. Putting all of the discussion so
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far together, we solve problem (12) by using the parametric simplex method to generate the optimal

solutions to this problem for all values of ui ∈ ℜ+. These solutions correspond to the optimal

solutions to problem (10) for all values of ui ∈ ℜ+. By the discussion that follows Theorem 3, we

can use the optimal solutions to problem (10) for all values of ui ∈ ℜ+ as the collection of candidate

price vectors Pi for nest i. Once we have the collection of candidate price vectors for each nest, we

can solve the linear program in (6) to obtain the value of ẑ that satisfies v0 ẑ = f(ẑ). Since there

are at most nq price vectors in each one of the collections P1, . . . ,Pm, there are O(m) decision

variables and O(mnq) constraints in the linear program in (6). In this case, by Theorem 1, we can

solve problem (5) for all i ∈M to obtain an optimal solution to problem (3).

In Section 4, we provide numerical experiments and demonstrate that the approach described

above can obtain an optimal solution to problem (3) quite fast. For problem instances with six

nests, 30 products in each nest and 30 possible prices for each product, we can obtain an optimal

solution to problem (3) in no more than two seconds.

2 Price Ladders Between Nests

In this section, we consider the case with price ladders between nests. In this setting, there is an

intrinsic ordering between the qualities of the nests and the prices charged in a nest corresponding

to a higher quality level should also be larger. There is no intrinsic ordering between the qualities

or the prices of the products in the same nest.

2.1 Problem Formulation

Our problem formulation is similar to the one in Section 1.1. There are m nests indexed by

M = {1, . . . ,m}. In each nest, there are n products indexed by N = {1, . . . , n}. For each product,

there are q possible prices given by Θ = {θ1, . . . , θq}. The possible prices for a product are indexed

such that 0 < θ1 < θ2 < . . . < θq. We use pij ∈ Θ to denote the price that we charge for product

j in nest i. If we charge the price pij for product j in nest i, then the preference weight of this

product is given by vij(pij). If we charge a larger price for a product, then its preference weight

becomes smaller, implying that vij(θ
1) > vij(θ

2) > . . . > vij(θ
q) > 0. Customers follow the same

choice process described in Section 1.1. Thus, if we use pi = (pi1, . . . , pin) ∈ Θn to denote the price

vector charged in nest i, then the expected revenue obtained from a customer that has already

decided to make a purchase in nest i is given by Ri(pi), where Ri(pi) is as in (1). If we charge

the price vectors (p1, . . . , pm) ∈ Θm×n over all nests, then the expected revenue obtained from a

customer is given by Π(p1, . . . , pm), where Π(p1, . . . , pm) is as in (2).

Our goal is to find the price vectors (p1, . . . , pm) to maximize the expected revenue Π(p1, . . . , pm)

subject to the constraint that the price vectors charged in the different nests are consistent with

the quality level that each nest represents. In other words, if nest i corresponds to a higher quality

level than nest l, then the prices of the products in nest i should be larger than the prices of
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the products in nest l. This constraint can be interpreted as a price ladder constraint between

the nests. To formulate the price ladder constraint, without loss of generality, we index the nests

such that a nests with a larger index represents a higher quality level. In other words, the nests

M = {1, . . . ,m} are indexed in the order of increasing quality levels. Thus, the price ladder

constraint ensures that the price vectors (p1, . . . , pm) charged over all nests satisfy maxj∈N p1j ≤
minj∈N p2j , maxj∈N p2j ≤ minj∈N p3j , . . . ,maxj∈N pm−1,j ≤ minj∈N pmj . As a function of the

price vector pi−1 charged in nest i − 1, the set of feasible price vectors in nest i is Gi(pi−1) =

{pi ∈ Θn : minj∈N pij ≥ maxj∈N pi−1,j}. We want to find the price vectors to charge over all nests

to maximize the expected revenue from a customer, yielding the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Gi(pi−1) ∀ i ∈ M \ {1}

{
Π(p1, . . . , pm)

}
. (13)

Problem (13) is significantly more difficult than problem (3) since the constraints link the price

vectors charged in different nests. The broad outline of our approach for problem (13) is similar to

the one for problem (3). We relate problem (13) to the problem of computing the fixed point of a

function. Assuming that we have a collection of candidate price vectors for each nest such that we

can stitch together an optimal solution to problem (13) by picking one price vector from each one

of the collections, we show how to obtain an optimal solution to problem (13). Finally, we show

how to come up with the collections of candidate price vectors. Although the broad outline of our

approach for problem (13) is similar to the one for problem (3), the details are quite different as

problem (13) is significantly more difficult than problem (3).

2.2 Connection to a Fixed Point Representation

Assume that we have a collection of candidate price vectors Pi = {pti : t ∈ Ti} for each nest i such

that we can stitch together an optimal solution to problem (13) by picking one price vector from

each one of the collections P1, . . . ,Pm. In other words, there exists an optimal solution (p∗1, . . . , p
∗
m)

to problem (13) such that p∗i ∈ Pi for all i ∈ M . The question is how we can pick a price vector

p∗i from the collection Pi for each nest i such that the solution (p∗1, . . . , p
∗
m) is indeed optimal to

problem (13). To answer this question, for any z ∈ ℜ+, we define g(z) as

g(z) = max
(p1, . . . , pm) ∈ P1 × . . .×Pm :
pi ∈ Gi(pi−1) ∀ i ∈ M \ {1}

{∑
i∈M

Vi(pi)
γi (Ri(pi)− z)

}
. (14)

Since v0 z is increasing and g(z) is decreasing in z with g(0) ≥ 0, there exists a value of ẑ that

satisfies v0 ẑ = g(ẑ), which corresponds to the fixed point of the function g(·)/v0. In the next

theorem, we show that the value of ẑ that satisfies v0 ẑ = g(ẑ) can be used to construct an optimal

solution to problem (13). The proof of this theorem follows from an outline that is similar to the

proof of Theorem 1 and we omit the proof. In the theorem, we recall that z∗ corresponds to the

optimal objective value of problem (13).
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Theorem 6 Assume that we have a collection of candidate price vectors Pi for each nest i such

that we can stitch together an optimal solution to problem (13) by picking one price vector from

each one of the collections P1, . . . ,Pm. Let ẑ be such that v0 ẑ = g(ẑ) and (p̂1, . . . , p̂m) be an optimal

solution to problem (14) when we solve this problem with z = ẑ. Then, we have Π(p̂1, . . . , p̂m) ≥ z∗.

Building on Theorem 6, we can obtain an optimal solution to problem (13) as follows. Assume

that we have a collection of candidate price vectors Pi = {pti : t ∈ Ti} for each nest i such that we

can stitch together an optimal solution to problem (13) by picking one price vector from each one

of the collections P1, . . . ,Pm. We find the value of ẑ that satisfies v0 ẑ = g(ẑ). If we let (p̂1, . . . , p̂m)

be an optimal solution to problem (14) when we solve this problem with z = ẑ, then by Theorem

6, we have Π(p̂1, . . . , p̂m) ≥ z∗. Since (p̂1, . . . , p̂m) is a feasible solution to problem (14), we also

have p̂i ∈ Gi(pi−1) for all i ∈ M \ {1}. Thus, the solution (p̂1, . . . , p̂m) is feasible to problem (13)

and provides an objective value for problem (13) that is at least as large as the optimal objective

value of this problem, indicating that (p̂1, . . . , p̂m) is an optimal solution to problem (13).

One important question is how we can find the value of ẑ that satisfies v0 ẑ = g(ẑ). In problem

(14), we observe that if we charge the price vector pi in nest i, then we obtain a contribution of

Vi(pi)
γi (Ri(pi)− z). By the constraints p̂i ∈ Gi(pi−1) for all i ∈M \ {1}, the smallest price charged

in nest i should be at least as large as the largest price charged in nest i − 1. Problem (14) finds

the price vectors to charge for the nests to maximize the total contribution. So, for a fixed value

of z ∈ ℜ+, we can solve problem (14) by using a dynamic program. The decision epochs are the

nests. When making the decision for nest i, the state variable is the largest price charged for the

products in nest i − 1. Thus, for a fixed value of z ∈ ℜ+, we can obtain an optimal solution to

problem (14) by solving the dynamic program

Ψi(wi−1 | z) = max
pi ∈ Pi :

pij ≥ wi−1 ∀ j ∈ N

{
Vi(pi)

γi (Ri(pi)− z) + Ψi+1(maxj∈N pij | z)
}
, (15)

with the boundary condition that Ψm+1(· | z) = 0. The optimal objective value of problem (14)

is given by Ψ1(θ
1 | z), where the value functions {Ψi(wi−1 | z) : wi−1 ∈ Θ, i ∈ M} are obtained

through the dynamic program in (15). Since there are q possible prices for a product, we can

solve the dynamic program above in O(q
∑

i∈M |Pi|) operations, which is reasonable as long as the

numbers of price vectors in the collections P1, . . . ,Pm are not too large. In Section 1.2, we recall

that we find the value of ẑ satisfying v0 ẑ = f(ẑ) by using the linear program in (6), but this linear

program is not useful to find the value of ẑ satisfying v0 ẑ = g(ẑ) since problem (14) does not

decompose by the nests due to the constraints pi ∈ Gi(pi−1) for all i ∈ M \ {1}. Instead, we show

how to use the linear programming formulation of the dynamic program in (15) to find the value

of ẑ that satisfies v0 ẑ = g(ẑ).

As mentioned in Section 1.5, dynamic programs with finite state and action spaces have

equivalent linear programming formulations. In these linear programs, there is one decision variable

for each state and decision epoch and there is one constraint for each state, action and decision
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epoch. Therefore, building on the linear programming formulation corresponding to the dynamic

program in (15), we propose solving the linear program

min ψ1(θ
1) (16)

s.t. ψi(wi−1) ≥ Vi(pi)
γi (Ri(pi)− z) + ψi+1(maxj∈N pij) ∀wi−1 ∈ Θ, pi ∈ Mi(wi−1), i ∈M

v0 z = ψ1(θ
1)

to find the value of ẑ that satisfies v0 ẑ = g(ẑ). In the linear program above, the decision variables

are z and ψ = {ψi(wi−1) : wi−1 ∈ Θ, i ∈ M}. We follow the convention that ψm+1(wm) = 0 for

all wm ∈ Θ. The set Mi(wi−1) is the set of feasible price vectors in nest i given that the largest

price charged in nest i− 1 is wi−1, which is given by Mi(wi−1) = {pi ∈ Pi : pij ≥ wi−1 ∀ j ∈ N}. If
we drop the second constraint in problem (16) and solve this problem for a fixed value of z ∈ ℜ+,

then this problem corresponds to the linear programming formulation for the dynamic program in

(15). Therefore, the optimal value of the decision variable ψ1(θ
1) would correspond to Ψ1(θ

1 | z)
obtained through the dynamic program in (15), which is equal to the optimal objective value of

problem (14) for a fixed value of z. On the other hand, it turns out that if we solve problem (16)

as formulated, then the optimal value of the decision variable z corresponds to the value of ẑ that

satisfies v0 ẑ = g(ẑ). We show this result in the next theorem.

Theorem 7 Using (ẑ, ψ̂) to denote an optimal solution to problem (16), we have v0 ẑ = g(ẑ).

Proof. Let z̃ satisfy v0 z̃ = g(z̃). We want to show that z̃ = ẑ. We solve the dynamic program in

(15) with z = z̃ to obtain the value functions Ψ(z̃) = {Ψi(wi−1 | z̃) : wi−1 ∈ Θ, i ∈M}. Due to the

way these value functions are computed in the dynamic program in (15), we have Ψi(wi−1 | z̃) ≥
Vi(pi)

γi (Ri(pi) − z̃) + Ψi+1(maxj∈N pij | z̃) for all wi−1 ∈ Θ, pi ∈ M(wi−1) and i ∈ M . Thus,

the solution (ẑ,Ψ(ẑ)) satisfies the first set of constraints in problem (16). By the discussion that

follows the dynamic program in (15), Ψ1(θ
1 | z̃) provides the optimal objective value of problem

(14) when we solve this problem with z = z̃, yielding Ψ1(θ
1 | z̃) = g(z̃) = v0 z̃. Thus, the solution

(ẑ,Ψ(ẑ)) satisfies the second constraint in problem (16) as well. Since the solution (ẑ,Ψ(ẑ)) is

feasible to problem (16), the objective value provided by this solution is at least as large as the

optimal objective value, yielding Ψ1(θ
1 | z̃) ≥ ψ̂1(θ

1). Thus, we obtain v0 z̃ = g(z̃) = Ψ1(θ
1 | z̃) ≥

ψ̂1(θ
1) = v0 ẑ, where the last equality holds since (ẑ, ψ̂) is a feasible solution to problem (16).

The last chain of inequalities in the previous paragraph shows that z̃ ≥ ẑ. To show that z̃ = ẑ,

we solve problem (14) with z = ẑ to obtain an optimal solution (p̂1, . . . , p̂m). Therefore, we have

g(ẑ) =
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − ẑ). For all i ∈ M , we let ŵi = maxj∈N p̂ij with the convention

that ŵ0 = θ1. Since the solution (p̂1, . . . , p̂m) is feasible to problem (14), we have p̂i ∈ Gi(p̂i−1)

for all i ∈ M \ {1} and p̂i ∈ Pi for all i ∈ M , which is equivalent to having p̂i ∈ M(ŵi−1) for all

i ∈ M . In this case, using the fact that the solution (ẑ, ψ̂) is feasible to problem (16), we have

ψ̂i(ŵi−1) ≥ Vi(p̂i)
γi (Ri(p̂i)− z)̂ + ψ̂i+1(ŵi) for all i ∈M . Adding these inequalities over all i ∈M
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and noting that ŵ0 = θ1, we obtain ψ̂1(θ
1) ≥

∑
i∈M Vi(p̂i)

γi (Ri(p̂i) − ẑ) = g(ẑ), where the last

equality uses the definition of (p̂1, . . . , p̂m). This chain of inequalities shows that ψ̂1(θ
1) ≥ g(ẑ). As

mentioned at the beginning of this paragraph, we have z̃ ≥ ẑ. Noting that g(z) is decreasing in z,

we obtain g(ẑ) ≥ g(z̃). In this case, we have ψ̂1(θ
1) ≥ g(ẑ) ≥ g(z̃) = v0 z̃ ≥ v0 ẑ = ψ̂1(θ

1), where

the first equality uses the definition of z̃, the third inequality is by the fact that z̃ ≥ ẑ and the

second equality uses the fact that the solution (ẑ, ψ̂) is feasible to problem (16) so that it satisfies

the second constraint in this problem. Thus, all of the inequalities in the last chain of inequalities

hold as equality and we obtain g(ẑ) = g(z̃) = v0 z̃ = v0 ẑ, establishing that z̃ = ẑ. �

By Theorem 7, we can solve problem (16) to find the value of ẑ that satisfies v0 ẑ = g(ẑ). Problem

(16) is a linear program with O(mq) decision variables and
∑

i∈M O(q|Pi|) constraints, which is

tractable as long as the numbers of price vectors in the collections P1, . . . ,Pm are reasonably

small. In the rest of our discussion, we focus on how to construct a reasonably small collection of

candidate price vectors Pi for each nest i such that we can stitch together an optimal solution to

problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. Once we

have these collections, we can solve problem (16) to find ẑ satisfying v0 ẑ = g(ẑ) and we can use

Theorem 6 to obtain an optimal solution to problem (13).

2.3 Characterizing Candidate Price Vectors

In this section, we provide an alternative characterization of the optimal price vector to charge

in each nest. This characterization ultimately becomes useful when we construct a collection of

candidate price vectors Pi for each nest i such that we can stitch together an optimal solution to

problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. In the next

theorem, we provide our alternative characterization of the optimal price vector to charge in each

nest. This theorem is analogous to Theorem 3, but its proof is substantially more involved due to

the constraints in problem (13) that link the price vectors charged in different nests. We defer the

proof to the appendix.

Theorem 8 Let (p∗1, . . . , p
∗
m) be an optimal solution to problem (13) providing the objective value

z∗ and set u∗i = max{γi z∗ + (1− γi)Ri(p
∗
i ), z

∗}, ℓ∗i = minj∈N p∗ij and w∗
i = maxj∈N p∗ij. If p̂i is an

optimal solution to the problem

max
pi ∈ Θ :

ℓ∗i ≤ pij ≤ w∗
i ∀ j ∈ N

{
Vi(pi) (Ri(pi)− u∗i )

}
, (17)

then (p̂1, . . . , p̂m) is an optimal solution to problem (13).

Theorem 8 implies that we can recover an optimal solution to problem (13) by solving problem

(17) for all i ∈M . Therefore, if we let p̂i be an optimal solution to problem (17) and use Pi = {p̂i}
as the collection of candidate price vectors to charge in nest i, then we can stitch together an
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optimal solution to problem (13) by picking one price vector from each one of the collections

P1, . . . ,Pm. However, this approach is not immediately useful for constructing a collection of

candidate price vectors, since solving problem (17) requires the knowledge of u∗i , ℓ
∗
i and w∗

i , all

of which, in turn, require the knowledge of an optimal solution to problem (13). To deal with this

difficulty, as a function of ui ∈ ℜ+, ℓi ∈ Θ and wi ∈ Θ, we use p̂i(ui, ℓi, wi) to denote an optimal

solution to the problem

max
pi ∈ Θ :

ℓi ≤ pij ≤ wi ∀ j ∈ N

{
Vi(pi) (Ri(pi)− ui)

}
. (18)

In this case, if we use the collection Pi = {p̂i(ui, ℓi, wi) : ui ∈ ℜ+, ℓi ∈ Θ, wi ∈ Θ} as the

collection of candidate price vectors for nest i, then we can stitch together an optimal solution

to problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. To

see this result, letting u∗i , ℓ
∗
i and w∗

i be as defined in Theorem 8, we have p̂i(u
∗
i , ℓ

∗
i , w

∗
i ) ∈

{p̂i(ui, ℓi, wi) : ui ∈ ℜ+, ℓi ∈ Θ, wi ∈ Θ} for all i ∈ M . Furthermore, since problem (18) with

ui = u∗i , ℓi = ℓ∗i and wi = w∗
i is identical to problem (17), Theorem 8 implies that

(p̂1(u
∗
1, ℓ

∗
1, w

∗
1), . . . , p̂m(u∗m, ℓ

∗
m, w

∗
m)) is an optimal solution to problem (13). Therefore, if we use

the collection Pi = {p̂i(ui, ℓi, wi) : ui ∈ ℜ+, ℓi ∈ Θ, wi ∈ Θ} as the collection of candidate price

vectors for nest i, then we can stitch together an optimal solution to problem (13) by picking one

price vector from each one of the collections P1, . . . ,Pm.

Noting the discussion above, we can use {p̂i(ui, ℓi, wi) : ui ∈ ℜ+, ℓi ∈ Θ, wi ∈ Θ} as the

collection of candidate price vectors to charge in nest i. In the subsequent sections, we show

that for a given ℓi ∈ Θ and wi ∈ Θ, the collection {p̂i(ui, ℓi, wi) : ui ∈ ℜ+} includes at most nq

price vectors and we can find these price vectors in a tractable fashion. Therefore, since there

are q possible values for each of ℓi and wi, the collection {p̂i(ui, ℓi, wi) : ui ∈ ℜ+, ℓi ∈ Θ, wi ∈ Θ}
includes at most nq3 price vectors.

2.4 Counting Candidate Price Vectors

In this section, we consider problem (18) for fixed values of ℓi ∈ Θ and wi ∈ Θ. We show that there

exists a collection of price vectors Pi = {pti : t ∈ Ti} such that this collection includes an optimal

solution to problem (18) for any value of ui ∈ ℜ+ and there are at most nq price vectors in this

collection. To show this result, we write problem (18) as

max
pi ∈ Θ :

ℓi ≤ pij ≤ wi ∀j ∈ N

{∑
j∈N

vij(pij)
[∑

j∈N pij vij(pij)∑
j∈N vij(pij)

− ui

]}
= max

pi ∈ Θ :
ℓi ≤ pij ≤ wi ∀j ∈ N

{∑
j∈N

(pij − ui) vij(pij)

}
.

(19)

In the next lemma, we begin by showing that as the value of ui in problem (19) gets larger, then

the optimal price for each product also gets larger. This lemma is similar to Lemma 4 but its proof

is significantly simpler than that of Lemma 4 since the prices in problem (19) has only upper and

lower bound constraints, rather than a price ladder constraint.
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Lemma 9 Using p̂i(ui) = (p̂i1(ui), . . . , p̂in(ui)) to denote an optimal solution to problem (19) as a

function of ui, if we have u−i < u+i , then it holds that p̂ij(u
−
i ) ≤ p̂ij(u

+
i ) for all j ∈ N .

Proof. To get a contradiction, assume that u−i < u+i , but we have p̂ij(u
−
i ) > p̂ij(u

+
i ) for some

j ∈ N . For notational brevity, we let p̂−i = p̂i(u
−
i ) and p̂+i = p̂i(u

+
i ). Noting that p̂−ij > p̂+ij and

using the fact that the preference weight of a product gets larger as we charge a smaller price for

the product, we obtain vij(p̂
−
ij) < vij(p̂

+
ij). In problem (19), if we charge the price pij for product j,

then this product makes a contribution of (pij −ui) vij(pij) to the objective function. We note that

p̂+i is an optimal solution to problem (19) when we solve this problem with ui = u+i . Therefore,

if we solve problem (19) with ui = u+i , then the contribution of product j when we charge the

price p+ij for this product should be at least as large as the contribution when we charge the price

p−ij . Otherwise, it would not be optimal to charge the price p+ij for product j when we solve problem

(19) with ui = u+i . Thus, we obtain (p+ij − u+i ) vij(p
+
ij) ≥ (p−ij − u+i ) vij(p

−
ij). Similarly, p̂−i is an

optimal solution to problem (19) when we solve this problem with ui = u−i . Therefore, following an

argument similar to the preceding one, it holds that (p−ij −u
−
i ) vij(p

−
ij) ≥ (p+ij −u

−
i ) vij(p

+
ij). Adding

the last two inequalities and canceling the common terms, we obtain u−i (vij(p̂
+
ij) − vij(p̂

−
ij)) ≥

u+i (vij(p̂
+
ij) − vij(p̂

−
ij)). Noting that vij(p̂

−
ij) < vij(p̂

+
ij) by the discussion at the beginning of the

proof, the last inequality implies that u−i ≥ u+i , which is a contradiction. �

In the next theorem, we build on the lemma above show that there exists a collection of at

most nq price vectors such that this collection includes an optimal solution to problem (19) for any

value of ui ∈ ℜ+. The proof of this theorem uses Lemma 9 and it follows from an outline that is

identical to that of Theorem 5. Thus, we omit the proof.

Theorem 10 There exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (19) for any value of ui ∈ ℜ+.

By Theorem 10, for fixed values of ℓi ∈ Θ and wi ∈ Θ, there exists a collection of at most nq

price vectors such that this collection includes an optimal solution to problem (19) for any value of

ui ∈ ℜ+. In the next section, we show how to construct this collection. Since there are q possible

values for each of ℓi and wi, repeating our approach for all possible values of ℓi and wi, it follows

that there exists a collection of at most nq3 price vectors such that this collection includes an

optimal solution to problem (19) for any value of ui ∈ ℜ+, ℓi ∈ Θ and wi ∈ Θ.

2.5 Constructing Candidate Price Vectors

In the previous section, we consider problem (19) for fixed values of ℓi ∈ Θ and wi ∈ Θ. We

show that there exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (19) for any value of ui ∈ ℜ+. In this section, we show how to

come up with this collection in a tractable fashion. Our approach builds on a linear programming
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formulation of problem (19). To give this linear programming formulation, we use the decision

variables {xij(pij) : pij ∈ Θ, j ∈ N}, where xij(pij) = 1 if we charge price pij for product j in nest

i, otherwise xij(pij) = 0. In this case, problem (19) can be written as

max
∑
j∈N

∑
pij∈Θ

(pij − ui) vij(pij)xij(pij) (20)

s.t.
∑
pij∈Θ

xij(pij) = 1 ∀ j ∈ N

xij(pij) = 0 ∀ pij ̸∈ {ℓi, . . . , wi}, j ∈ N

xij(pij) ∈ {0, 1} ∀ pij ∈ Θ, j ∈ N.

In the problem above, the first set of constraints ensures that we choose one price for each

product, whereas the second set of constraints ensures that the price of each product is between

ℓi and wi. Using the second set of constraints, we can set the values of the decision variables

{xij(pij) : pij ̸∈ {ℓi, . . . , wi}, j ∈ N} to zero and drop these decision variables from problem

(20). On the other hand, each row of the constraint matrix corresponding to the first set of

constraints includes consecutive ones. Such a matrix is called an interval matrix and interval

matrices are totally unimodular; see Nemhauser and Wolsey (1988). Therefore, we can obtain an

optimal solution to problem (20) by solving its linear programming relaxation. Also, we observe

that the value of ui ∈ ℜ+ only affects the objective function coefficients in problem (20). Thus, we

can vary ui ∈ ℜ+ parametrically and solve problem (20) by using the parametric simplex method to

generate the optimal solutions to this problem for all values of ui ∈ ℜ+. These solutions correspond

to the optimal solutions to problem (19) for all values of ui ∈ ℜ+.

Therefore, for fixed values of ℓi ∈ Θ and wi ∈ Θ, we solve problem (20) by using the

parametric simplex method to generate the optimal solutions to this problem for all values of

ui ∈ ℜ+. Repeating this approach for all possible values of ℓi and wi, we obtain the optimal

solutions to problem (20) for all values of ui ∈ ℜ+, ℓi ∈ Θ and wi ∈ Θ. By the discussion that

follows Theorem 8, we can use the optimal solutions to problem (20) for all values of ui ∈ ℜ+,

ℓi ∈ Θ and wi ∈ Θ as the collection of candidate price vectors Pi in nest i. Once we have the

collection of candidate price vectors in each nest, we can solve the linear program in (16) to find

the value of ẑ that satisfies v0 ẑ = g(ẑ). Since there are at most nq3 price vectors in each one of

the collections P1, . . . ,Pm, we have |M(wi−1)| = O(nq3), which implies that the linear program in

(16) has O(mq) decision variables and O(mnq4) constraints. In this case, by Theorem 6, we can

solve problem (14) with z = ẑ to obtain an optimal solution to problem (13). To solve problem

(14) with z = ẑ, we can simply solve the dynamic program in (15) with z = ẑ.

3 Numerical Experiments

In this section, we provide numerical experiments to show that the approaches in Sections 1 and 2

can obtain the optimal solutions to problems (3) and (13) reasonably fast. We also investigate the

number of candidate price vectors that we construct to obtain the optimal solutions.
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3.1 Price Ladders Inside Nests

In this section, we consider problem instances with price ladders inside nests. In our numerical

experiments, we vary the number of nests over m ∈ {2, 4, 6}, the number of products in each nest

over n ∈ {10, 20, 30} and the number of possible prices for each product over q ∈ {10, 20, 30}. This
setup provides 27 parameter combinations for (m,n, q). In each parameter combination, we generate

10 individual problem instances by using the following approach. The possible prices for each

product take values over the interval [1, 10] and we obtain the prices {θ1, . . . , θq} by dividing the

interval [1, 10] into q equal pieces. To come up with the preference weights, we sample αij and

βij from the uniform distribution over the interval [0, 2] for all i ∈ M , j ∈ N . The preference

weight of product j in nest i corresponding to the price pij is given by exp(αij − βij pij). The

nested logit model has a random utility maximization interpretation, where a customer associates

random utilities with the products and the no purchase option, choosing the option with the largest

utility. In the random utility maximization setup, αij captures the nominal mean utility of product

j in nest i and βij captures how the mean utility of product j in nest i changes as a function of

its price; see McFadden (1974). We sample the dissimilarity parameter γi for each nest i from the

uniform distribution over the interval [0.25, 1]. For each problem instance, we use the approach

described at the end of Section 1.5 to obtain an optimal solution to problem (3).

We summarize our numerical results in Table 1. The first column in this table shows the

parameter configurations for our test problems. We recall that we generate 10 individual problem

instances in each parameter configuration. The second column shows the average CPU seconds

to obtain an optimal solution to problem (3), where the average is computed over 10 problem

instances that we generate for a particular parameter combination. The third and fourth columns

respectively show the maximum and minimum CPU seconds over 10 problem instances. Similar to

the average, the maximum and minimum are computed over 10 problem instances that we generate

for a particular parameter combination. There are two main steps in obtaining an optimal solution

to problem (3). First, we construct the collections of candidate price vectors for each nest, which

requires solving problem (12) by using the parametric simplex method to generate the possible

optimal solutions to this problem for all values of ui ∈ ℜ+. Second, we solve problem (6) to stitch

together an optimal solution by using the collection of candidate price vectors for each nest. The fifth

column in Table 1 shows what percent of the CPU seconds is spent on generating the collections of

candidate price vectors. The remaining portion of the CPU seconds is spent on stitching together an

optimal solution. The sixth column shows the average number of price vectors in the collection that

we generate for each nest, where the average is computed over all nests in a problem instance and

over 10 problem instances that we generate for a particular parameter combination. The seventh

and eighth columns respectively show the maximum and minimum number of price vectors in the

collection that we generate for each nest.

To demonstrate the potential importance of generating the collections of candidate price vectors

carefully, we also find the best solution to problem (3) that charges a constant price in each
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Perc.
Param. Time No. of Cand. Price Perc. Opt. Gap of
Comb. Total CPU Secs. Const. Vectors per Nest Const. Price in Nests
(m,n, q) Avg. Max. Min. Cand. Avg. Max. Min. Avg. Max. Min.

(2, 10, 10) 0.01 0.01 0.00 91.89 23 34 10 9.05 22.98 0.01
(2, 10, 20) 0.05 0.06 0.03 96.92 52 64 34 9.24 19.45 0.01
(2, 10, 30) 0.12 0.18 0.06 98.00 73 97 35 11.40 18.90 0.00

(2, 20, 10) 0.02 0.02 0.01 95.35 29 40 12 10.62 20.04 0.01
(2, 20, 20) 0.10 0.13 0.03 98.64 55 74 14 12.38 20.84 0.01
(2, 20, 30) 0.26 0.38 0.14 99.17 78 117 41 11.17 20.65 0.01

(2, 30, 10) 0.03 0.04 0.01 96.50 30 41 13 8.72 18.37 0.02
(2, 30, 20) 0.14 0.24 0.06 98.89 52 98 22 6.33 16.28 0.01
(2, 30, 30) 0.49 0.78 0.26 99.47 98 163 48 8.71 17.45 0.03

(4, 10, 10) 0.01 0.02 0.01 92.48 22 30 11 6.86 12.87 0.00
(4, 10, 20) 0.08 0.09 0.06 97.10 43 55 34 7.01 11.57 0.04
(4, 10, 30) 0.23 0.32 0.17 98.58 66 95 48 7.20 13.43 0.02

(4, 20, 10) 0.03 0.04 0.02 96.31 25 31 15 5.24 11.19 0.01
(4, 20, 20) 0.17 0.23 0.10 98.36 50 69 29 4.18 10.51 0.02
(4, 20, 30) 0.53 0.77 0.30 99.24 77 115 43 5.65 10.85 0.01

(4, 30, 10) 0.05 0.07 0.04 97.12 30 41 22 6.88 10.46 0.01
(4, 30, 20) 0.26 0.31 0.20 98.90 51 62 38 5.97 10.19 0.02
(4, 30, 30) 0.85 1.03 0.50 99.48 84 103 47 6.99 11.00 0.02

(6, 10, 10) 0.02 0.03 0.01 91.71 21 31 10 5.17 10.93 0.00
(6, 10, 20) 0.12 0.15 0.05 97.39 42 59 20 6.27 9.88 0.00
(6, 10, 30) 0.34 0.43 0.23 98.32 65 84 45 5.90 10.79 0.02

(6, 20, 10) 0.05 0.07 0.04 95.51 28 40 19 5.96 10.11 0.01
(6, 20, 20) 0.28 0.38 0.15 98.58 53 74 29 5.55 9.40 0.00
(6, 20, 30) 0.79 1.12 0.49 99.29 78 113 45 5.11 9.64 0.01

(6, 30, 10) 0.07 0.10 0.05 97.41 27 35 21 3.98 10.83 0.01
(6, 30, 20) 0.47 0.61 0.38 99.04 59 80 47 5.81 10.74 0.00
(6, 30, 30) 1.40 1.89 1.12 99.51 89 118 72 7.26 10.93 0.02

Table 1: Computational results for test problems with price ladders inside nests.

nest. Letting e ∈ ℜn be the vector of all ones, this solution can be obtained by using the collection

Pi = {θ1 e, . . . , θq e} as the collection of candidate price vectors for each nest i and solving problem

(6) by using this collection for each nest i. (Li and Huh (2011) show that if βij = βik for all

j, k ∈ N and i ∈ M , then it is optimal to charge a constant price in each nest.) The ninth

column in Table 1 shows the average percent gap between the optimal objective value of problem

(3) and the best expected revenue obtained by charging a constant price in each nest, where

the average is computed over 10 problem instances that we generate for a particular parameter

combination. In other words, using Optk to denote the optimal expected revenue for problem

instance k that we generate for a particular parameter combination and ConPk to denote the best

expected revenue obtained by charging a constant price in each nest, the ninth column shows the

average of the data {100× (Optk − ConPk)/Optk : k = 1, . . . , 10}. The tenth and eleventh columns

show the maximum and minimum percent gaps between the optimal objective value of problem (3)

and the best expected revenue obtained by charging a constant price in each nest.

Our computational results indicate that we can obtain an optimal solution to problem (3) rather

fast. For the largest problem instances with m = 6, n = 30 and q = 30, we can obtain an optimal
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solution in less than two seconds and the average CPU seconds for these problem instances is about

1.4. Naturally, the CPU seconds have an increasing trend as the number of nests, products or

possible prices increases. We observe that almost all of the CPU seconds are spent on constructing

the collections of candidate price vectors. In Section 1.4, we show that we need to construct at most

nq candidate price vectors in each nest, but our numerical results demonstrate that the number

of candidate price vectors that we actually end up constructing can be substantially smaller than

the upper bound of nq. For example, for the problem instances with n = 30 and q = 30, we have

nq = 900, but the average number of candidate price vectors that we construct for each nest is

about 90 and the number of candidate price vectors that we construct for each nest does not exceed

163. Charging a constant price in each nest can provide a good solution for some problem instances,

but it is not too surprising to see that this approach is generally not reliable. There are numerous

problem instances in Table 1 where the optimal objective value exceeds the best expected revenue

obtained by charging a constant price in each nest by more than 20%.

3.2 Price Ladders Between Nests

In this section, we consider problem instances with price ladders between nests. We generate our

problem instances by using the same approach that we use for generating the problem instances with

price ladders inside nests. For each problem instance, we use the approach described at the end of

Section 2.5 to obtain an optimal solution to problem (13). In particular, to construct the collection

of candidate price vectors for each nest, we solve problem (20) through the parametric simplex

method to generate the possible optimal solutions to this problem for all values of ui ∈ ℜ+. In this

case, we solve problem (16) to find the value of ẑ satisfying v0 ẑ = g(ẑ) and to stitch together an

optimal solution by using the collection of candidate price vectors for each nest.

We summarize our numerical results in Table 2. The layout of this table is identical to that

of Table 1. For the problem instances with 10 possible prices for each product, we can obtain an

optimal solution in 1.34 seconds. For the largest problem instances with m = 6, n = 30 and q = 30,

the CPU seconds are below two minutes. On average, about half of the CPU seconds is spent on

constructing the collections of candidate price vectors. In Section 2.4, we show that we need to

construct at most nq3 price vectors in each nest, but we actually end up generating substantially

fewer candidate price vectors. For example, for the problem instances with n = 30 and q = 30,

we have nq3 = 810,000, but the average number of candidate price vectors that we construct for

each nest is about 25,000. Finally, the best expected revenue obtained by charging a constant price

in each nest can deviate significantly from the optimal expected revenue and there are problem

instances where this approach suffers optimality gaps that exceed 20%.
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Perc.
Param. Time No. of Cand. Price Perc. Opt. Gap of
Comb. Total CPU Secs. Const. Vectors per Nest Const. Price in Nests
(m,n, q) Avg. Max. Min. Cand. Avg. Max. Min. Avg. Max. Min.

(2, 10, 10) 0.06 0.08 0.05 42.90 357 463 262 9.01 22.79 0.01
(2, 10, 20) 0.77 1.00 0.59 58.00 1,798 2,447 882 9.35 19.59 0.02
(2, 10, 30) 3.60 4.43 3.03 69.65 5,845 8,191 3,914 11.37 19.19 0.01

(2, 20, 10) 0.19 0.20 0.18 47.24 924 1,030 674 9.97 18.84 0.01
(2, 20, 20) 2.75 2.99 2.54 58.24 4,833 6,276 3,481 11.54 18.93 0.01
(2, 20, 30) 14.05 15.76 11.56 69.99 15,797 21,829 12,189 10.54 19.87 0.01

(2, 30, 10) 0.37 0.40 0.33 53.34 1,332 1,476 1,061 10.52 22.18 0.02
(2, 30, 20) 5.55 5.90 5.09 65.54 8,432 9,921 6,873 7.65 19.69 0.01
(2, 30, 30) 32.01 35.95 29.40 72.53 21,821 26,983 14,980 10.53 21.42 0.02

(4, 10, 10) 0.15 0.16 0.13 40.00 284 374 206 7.50 13.97 0.00
(4, 10, 20) 1.87 2.57 1.37 49.60 1,981 2,980 899 7.69 13.22 0.02
(4, 10, 30) 9.52 12.54 6.71 56.84 5,246 7,580 3,373 7.95 15.14 0.02

(4, 20, 10) 0.46 0.54 0.40 41.59 853 954 688 5.89 12.60 0.01
(4, 20, 20) 6.28 7.45 5.25 52.35 5,233 6,390 4,451 4.61 11.82 0.02
(4, 20, 30) 30.65 33.15 28.63 60.86 15,433 19,105 13,145 6.33 12.12 0.02

(4, 30, 10) 0.81 0.83 0.75 46.37 1,368 1,450 1,219 7.97 12.12 0.01
(4, 30, 20) 11.62 12.34 10.38 60.00 7,753 9,109 5,289 6.92 11.82 0.02
(4, 30, 30) 68.79 71.38 64.05 63.61 24,193 27,144 21,519 8.18 12.89 0.02

(6, 10, 10) 0.20 0.25 0.18 36.71 301 365 223 4.85 10.23 0.00
(6, 10, 20) 2.54 2.90 2.08 49.89 1,733 2,202 1,070 5.93 9.39 0.00
(6, 10, 30) 13.86 16.93 11.86 52.79 5,928 8,913 4,201 5.50 10.05 0.01

(6, 20, 10) 0.66 0.74 0.59 39.98 863 984 737 5.39 9.33 0.01
(6, 20, 20) 8.92 9.48 7.81 52.88 4,899 5,513 3,992 5.02 8.52 0.00
(6, 20, 30) 48.62 51.89 44.69 57.91 15,677 18,043 12,110 4.58 8.64 0.00

(6, 30, 10) 1.25 1.34 1.23 44.98 1,335 1,446 1,259 3.72 9.91 0.01
(6, 30, 20) 18.31 19.17 17.29 56.94 8,049 9,222 7,078 5.54 10.78 0.00
(6, 30, 30) 108.72 116.77 102.09 60.95 24,930 27,364 21,331 6.92 10.93 0.01

Table 2: Computational results for test problems with price ladders between nests.

4 Conclusions

We provided algorithms to solve pricing problems under the nested logit model when there are

price ladders inside nests or between nests. There are several interesting extensions of our work. It

is possible to extend our approach to the case where there are price ladders both inside nests

and between nests. In this setting, if we index both the nests M = {1, . . . ,m} and the products

N = {1, . . . , n} in the order of increasing quality levels, then the prices charged for the products

should satisfy p11 ≤ p12 ≤ . . . ≤ p1n ≤ p21 ≤ p22 ≤ . . . ≤ p2n ≤ . . . ≤ pm1 ≤ pm2 ≤ . . . ≤ pmn. To

make this extension, we observe that if we know the smallest and the largest optimal prices charged

in nest i to be ℓ∗i and w
∗
i , then we can use a dynamic program similar to the one in (11) to construct

the collection of candidate price vectors for nest i. Since we do not know ℓ∗i and w∗
i , we can solve

a dynamic program similar to the one in (11) for all ℓi ∈ Θ and wi ∈ Θ, to construct the collection

of candidate price vectors for nest i. To find the optimal combination of candidate price vectors for

the different nests, we can use a dynamic program similar to the one in (15), where we impose the

constraint that the smallest price charged in nest i should be at least as large as the largest price
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charged in nest i − 1. Also, in our pricing problems, the set of products offered to the customers

is fixed and the goal is to find the prices to charge for the products, but our results easily extend

to joint assortment optimization and pricing problems, where we decide which products to offer to

the customers, as well as the prices of the offered products.

Considering other extensions, as described in the introduction section, there can be quality

consistency constraints that are more general than the ones considered in this paper. It is important

to investigate how to construct collections of candidate price vectors under other quality consistency

constraints. We can also study quality consistency constraints for pricing problems under the nested

logit model with more than two stages. The linear programs that we use to combine the candidate

price vectors for the different nests do not work when there are multiple stages in the nested

logit model and extensions in this direction seem nontrivial. Finally, under the price ladders inside

nests and between nests, we respectively have the upper bounds of nq and nq3 for the numbers of

candidate price vectors in each nest. These upper bounds demonstrate that the number of candidate

price vectors that we need scales polynomially with the numbers of products and possible prices,

but we can investigate whether it is possible to obtain tighter upper bounds.
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Appendix: Proof of Theorem 8

In this section, we show Theorem 8. We need the two intermediate lemmas to show Theorem 8. In

the next lemma, we show an ordering between the optimal expected revenues from a customer that

has already decided to make a purchase in different nests.

Lemma 11 If (p∗1, . . . , p
∗
m) is an optimal solution to problem (13), then we have R1(p

∗
1) ≤ R2(p

∗
2) ≤

. . . ≤ Rm(p∗m).

Proof. Since (p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we have pi ∈ Gi(pi−1), which implies

that maxj∈N p∗i−1,j ≤ minj∈N p∗ij . Therefore, the largest price in the price vector p∗i−1 is smaller

than the smallest price in the price vector p∗i . By (1), we observe that Ri−1(p
∗
i−1) is a convex

combination of the prices in the price vector p∗i−1, whereas Ri(p
∗
i ) is a convex combination of the

prices in the price vector p∗i . Since the largest price in the price vector p∗i−1 is smaller than the

smallest price in the price vector p∗i , we obtain Ri−1(p
∗
i−1) ≤ Ri(p

∗
i ). �

In the next lemma, we show that if the optimal expected revenue from a customer that has

already decided to make a purchase in a particular nest does not exceed the optimal expected

revenue, then the smallest price in the next nest does not exceed the optimal expected revenue.

Lemma 12 If (p∗1, . . . , p
∗
m) is an optimal solution to problem (13) providing the objective value z∗

and Ri(p
∗
i ) < z∗ for some i ∈M , then we have i ∈M \ {m} and minj∈N p∗i+1,j < z∗.

Proof. First, we show that if Ri(p
∗
i ) < z∗ for some i ∈ M , then we have i ∈ M \ {m}. To get

a contradiction, assume that Rm(p∗m) < z∗. By Lemma 11, we have R1(p
∗
1) ≤ R2(p

∗
2) ≤ . . . ≤

Rm(p∗m) < z∗. Thus, we obtain Π(p∗1, . . . , p
∗
m) =

∑
i∈M Vi(p

∗
i )

γi Ri(p
∗
i )/(v0 +

∑
i∈M Vi(p

∗
i )

γi) <∑
i∈M Vi(p

∗
i )

γi z∗/(v0 +
∑

i∈M Vi(p
∗
i )

γi) < z∗, which contradicts the fact that (p∗1, . . . , p
∗
m) is an

optimal solution to problem (13).

Second, we show that if Ri(p
∗
i ) < z∗ for some i ∈ M , then minj∈N p∗i+1,j < z∗. To get a

contradiction assume that there exists a nest k such that Rk(p
∗
k) < z∗ and minj∈N p∗k+1,j ≥ z∗. For

notational brevity, we let ℓ∗k+1 = minj∈N p∗k+1,j . By our assumption, we have ℓ∗k+1 ≥ z∗. We define a

solution (p̂1, . . . , p̂m) to problem (13) as p̂i = p∗i for all i ∈M\{k} and p̂kj = ℓ∗k+1 for all j ∈ N . Since

the solutions (p∗1, . . . , p
∗
m) and (p̂1, . . . , p̂m) charge the same prices in all nests other than nest k, we

have Vi(p
∗
i )

γi (Ri(p
∗
i )−z∗) = Vi(p̂i)

γi (Ri(p̂i)−z∗) for all i ∈M \{k}. For nest k, we have Rk(p
∗
k) <

z∗, but Rk(p̂k) =
∑

j∈N p̂kj vkj(p̂kj)/
∑

j∈N vkj(p̂kj) =
∑

j∈N ℓ∗k+1 vkj(p̂kj)/
∑

j∈N vkj(p̂kj) =

ℓ∗k+1 ≥ z∗. Thus, we obtain Vk(p
∗
k)

γk (Rk(p
∗
k) − z∗) < 0 ≤ Vk(p̂k)

γk (Rk(p̂k) − z∗). The discussion

so far in this paragraph shows that Vi(p
∗
i )

γi (Ri(p
∗
i )− z∗) ≤ Vi(p̂i)

γi (Ri(p̂i)− z∗) for all i ∈M and

the inequality holds as strict inequality for nest k. Adding this inequality over all i ∈ M , we have∑
i∈M Vi(p

∗
i )

γi (Ri(p
∗
i )− z∗) <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i)− z∗). On the other hand, since (p∗1, . . . , p
∗
m) is
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an optimal solution to problem (13), we have z∗ =
∑

i∈M Vi(p
∗
i )Ri(p

∗
i )/(v0 +

∑
i∈M Vi(p

∗
i )

γi) and

arranging the terms in this equality yields v0 z
∗ =

∑
i∈M Vi(p

∗
i )

γi (Ri(p
∗
i )− z∗). In this case, having∑

i∈M Vi(p
∗
i )

γi (Ri(p
∗
i )− z∗) <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i)− z∗) and v0 z
∗ =

∑
i∈M Vi(p

∗
i )

γi (Ri(p
∗
i )− z∗)

yields v0 z
∗ <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i) − z∗). Solving for z∗ in this inequality, we obtain z∗ <∑
i∈M Vi(p̂i)Ri(p̂i)/(v0+

∑
i∈M Vi(p̂i)

γi) = Π(p̂1, . . . , p̂m). Thus, the solution (p̂1, . . . , p̂m) provides

an objective value for problem (13) that is strictly larger than the optimal objective value. In the

rest of the proof, we show that (p̂1, . . . , p̂m) is a feasible solution to problem (13), which yields a

contradiction and the desired result follows.

We have minj∈N p̂kj = ℓ∗k+1 = minj∈N p∗k+1,j ≥ maxj∈N p∗kj ≥ minj∈N p∗kj ≥ maxj∈N p∗k−1,j =

maxj∈N p̂k−1,j , where the first equality uses the definition of p̂k, the second equality uses the

definition of ℓ∗k+1, the first and third inequalities use the fact that (p∗1, . . . , p
∗
m) is a feasible solution to

problem (13) so that p∗k+1 ∈ Gk+1(pk) and p
∗
k ∈ Gk(p

∗
k−1) and the last equality is by the definition of

p̂k−1. Thus, this chain of inequalities shows that p̂k ∈ Gk(p̂k−1). Similarly, we have minj∈N p̂k+1,j =

minj∈N p∗k+1,j = ℓ∗k+1 = maxj∈N p̂kj , where the first and third equalities use the definitions of p̂k+1

and p̂k, whereas the second equality uses the definition of ℓ∗k+1. Thus, this chain of equalities shows

that p̂k+1 ∈ Gk+1(p̂k). Since the solutions (p
∗
1, . . . , p

∗
m) and (p̂1, . . . , p̂m) charge the same prices in all

nests other than nest k and (p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we have p̂i ∈ Gi(p̂i−1)

for all i ∈ M \ {1, k, k + 1} as well. Therefore, we have p̂i ∈ Gi(p̂i−1) for all i ∈ M \ {1}, which
indicates that (p̂1, . . . , p̂m) is a feasible solution to problem (13). �

In the rest of this section, we show Theorem 8.

For notational brevity, we let R∗
i = Ri(p

∗
i ), V

∗
i = Vi(p

∗
i ), R̂i = Ri(p̂i) and V̂i = Vi(p̂i). First,

we consider a nest i that satisfies R∗
i < z∗. By Lemma 12, we observe that i ∈ M \ {m}. Since

p̂i is a feasible solution to problem (17), we have p̂ij ≤ w∗
i for all j ∈ N , where w∗

i is as defined in

Theorem 8. We claim that p̂ij = w∗
i for all j ∈ N . To get a contradiction, assume that p̂ij < w∗

i

for some j ∈ N . Since (p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we have p∗i+1 ∈ Gi+1(p

∗
i ),

which implies that minj∈N p∗i+1,j ≥ maxj∈N p∗ij = w∗
i , where the equality is by the definition of w∗

i

given in Theorem 8. On the other hand, since R∗
i < z∗, Lemma 12 implies that minj∈N p∗i+1,j <

z∗. Therefore, we obtain w∗
i = maxj∈N p∗ij ≤ minj∈N p∗i+1,j < z∗. We define a solution p̃i =

(p̃i1, . . . , p̃in) to problem (17) as p̃ij = w∗
i for all j ∈ N . This solution is clearly feasible to problem

(17) and satisfies Ri(p̃i) =
∑

j∈N w∗
i vij(p

∗
ij)/

∑
j∈N vij(p

∗
ij) = w∗

i < z∗. Furthermore, we have

Ri(p̂i) =
∑

j∈N p̂ij vij(p̂ij)/
∑

j∈N vij(p̂ij) ≤
∑

j∈N w∗
i vij(p̂ij)/

∑
j∈N vij(p̂ij) = w∗

i = Ri(p̃i). By

the last two chains of inequalities, we get z∗ −Ri(p̂i) ≥ z∗ −Ri(p̃i) = z∗ −w∗
i > 0. Noting that the

preference weight of a product becomes smaller as we charge a larger price, since p̂ij ≤ w∗
i = p̃ij

for all j ∈ N and the inequality is strict for some j ∈ N , it holds that vij(p̂ij) ≥ vij(p̃ij) for

all j ∈ N and the inequality is strict for some j ∈ N . Thus, adding the last inequality over

all j ∈ N , we obtain Vi(p̂i) > Vi(p̃i). In this case, having z∗ − Ri(p̂i) ≥ z∗ − Ri(p̃i) > 0 and

Vi(p̂i) > Vi(p̃i) implies that Vi(p̂i) (z
∗ − Ri(p̂i)) > Vi(p̃i) (z

∗ − Ri(p̃i)). Since R∗
i < z∗, we have

u∗i = z∗ by the definition of u∗i , in which case, the last inequality can equivalently be written as
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Vi(p̂i) (Ri(p̂i)− u∗i ) < Vi(p̃i) (Ri(p̃i)− u∗i ), which contradicts the fact that p̂i is an optimal solution

to problem (17). Thus, our claim holds and we have p̂ij = w∗
i for all j ∈ N .

By the claim established in the previous paragraph, we have p̂ij = w∗
i for all j ∈ N . Noting that

w∗
i = maxj∈N p∗ij by the definition of w∗

i , we have p̂ij = w∗
i ≥ p∗ij for all j ∈ N . Since the preference

weight of a product becomes smaller as we charge a larger price, the last inequality implies that

vij(p̂ij) ≤ vij(p
∗
ij) for all j ∈ N . Adding this inequality over all j ∈ N , we obtain Vi(p̂i) ≤

Vi(p
∗
i ). Furthermore, we have Ri(p̂i) =

∑
j∈N w∗

i vij(p̂ij)/
∑

j∈N vij(p̂ij) = w∗
i = maxj∈N p∗ij ≤

minj∈N p∗i+1,j < z∗, where the first inequality is by the fact that (p∗1, . . . , p
∗
m) is a feasible solution

to problem (13) so that p∗i+1 ∈ Gi+1(p
∗
i ) and the second inequality follows by noting thatR∗

i < z∗ and

using Lemma 12. Since w∗
i ≥ p∗ij for all j ∈ N , we have Ri(p

∗
i ) ≤

∑
j∈N w∗

i vij(p̂ij)/
∑

j∈N vij(p̂ij) =

w∗
i = Ri(p̂i) as well. The last two chains of inequalities show that z∗ − Ri(p

∗
i ) ≥ z∗ − Ri(p̂i) =

z∗ − w∗
i > 0. In this case, having Vi(p̂i) ≤ Vi(p

∗
i ) and z∗ − Ri(p

∗
i ) > z∗ − Ri(p̂i) > 0 yields

Vi(p
∗
i )

γi (z∗ − Ri(p
∗
i )) > Vi(p̂i)

γi (z∗ − Ri(p̂i)). The last inequality shows that (V ∗
i )

γi (R∗
i − z∗) <

V̂ γi
i (R̂i − z∗) for each nest i that satisfies R∗

i < z∗.

Second, we consider a nest i that satisfies R∗
i ≥ z∗. In this case, we can follow the same

argument at the beginning of the proof of Theorem 3 to show that (V ∗
i )

γi (R∗
i − z∗) ≤ V̂ γi

i (R̂i− z∗)
for each nest i that satisfies R∗

i ≥ z∗. Therefore, we obtain (V ∗
i )

γi (R∗
i − z∗) ≤ V̂ γi

i (R̂i − z∗)

for all i ∈ M . Adding this inequality over all i ∈ M , we have
∑

i∈M (V ∗
i )

γi (R∗
i − z∗) ≤∑

i∈M V̂ γi
i (R̂i − z∗). Since (p∗1, . . . , p

∗
m) is an optimal solution to problem (13), we have z∗ =∑

i∈M (V ∗
i )

γiR∗
i /(v0 +

∑
i∈M (V ∗

i )
γi). Arranging the terms in this equality, it follows that

v0 z
∗ =

∑
i∈M (V ∗

i )
γi (R∗

i − z∗), in which case, we have v0 z
∗ =

∑
i∈M (V ∗

i )
γi (R∗

i − z∗) ≤∑
i∈M V̂ γi

i (R̂i − z∗). Focusing on the first and last terms in this chain of inequalities and solving

for z∗, we get z∗ ≤
∑

i∈M V̂ γi
i R̂i/(v0 +

∑
i∈M V̂ γi

i ) = Π(p̂1, . . . , p̂m). Thus, the solution (p̂1, . . . , p̂m)

provides an expected revenue that is at least as large as the optimal objective value of problem

(13). In the rest of the proof, we show that (p̂1, . . . , p̂m) is a feasible solution to problem (13),

which establishes that (p̂1, . . . , p̂m) is an optimal solution to problem (13).

Consider nest i ∈M\{1}. Noting that p̂i is a feasible solution to problem (17), we obtain p̂ij ≥ ℓ∗i
and p̂i−1,j ≤ w∗

i−1 for all j ∈ N , which imply that minj∈N p̂ij ≥ ℓ∗i and maxj∈N p̂i−1,j ≤ w∗
i−1. Since

(p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we also have p∗i ∈ Gi(p

∗
i−1), which implies that

w∗
i−1 = maxj∈N p∗i−1,j ≤ minj∈N p∗ij = ℓ∗i . Therefore, we obtain maxj∈N p̂i−1,j ≤ w∗

i−1 ≤ ℓ∗i ≤
minj∈N p̂ij . The last inequality shows that p̂i ∈ Gi(p̂i−1). Since our choice of nest i is arbitrary, we

have p̂i ∈ Gi(p̂i−1) for all i ∈M \ {1}.
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