
ORIE 6334 Bridging Continuous and Discrete Optimization Nov. 13, 2019

Problem Set 4
Due Date: December 4, 2019

As a reminder, the collaboration policy from the syllabus is as follows:

Your work on problem sets and exams should be your own. You may dis-
cuss approaches to problems with other students, but as a general guide-
line, such discussions may not involve taking notes. You must write up
solutions on your own independently, and acknowledge anyone with whom
you discussed the problem by writing their names on your problem set.
You may not use papers or books or other sources (e.g. material from the
web) to help obtain your solution.

1. Recall that in class we defined A � B iff B−A � 0 (that is, B−A is a positive
semidefinite matrix).

Recall also that for a symmetric matrix A with eigenvalues λ1 ≤ · · · ≤ λn and
orthonormal eigenvectors x1, . . . , xn, we can express A = XDXT for X with
xi as its ith column, and D a diagonal matrix with dii = λi. For a function
f : < → <, define the spectral mapping f(A) = X f(D)XT , where f(D) is the
diagonal matrix whose (i, i)th entry is f(dii).

Suppose that for f : < → < and g : < → <, f(x) ≤ g(x) for all x ∈ [`, u].
Further suppose that λi ∈ [`, u] for all eigenvalues λi of a symmetric matrix A.
Then show that f(A) � g(A).

2. We can think about the matrix multiplicative weight algorithm as minimizing
costs, rather than maximizing value. Suppose that in each time step t, we must
choose a unit norm vector u with ‖u‖ = 1, and we must pay a cost uTMtu for
matrix Mt revealed at that time step with 0 �Mt � I. Consider the variant of
the matrix multiplicative weight algorithm given below.

Algorithm 1: Matrix Multiplicative Weights

W1 ← I
for t← 1 to T do

Pt ← Wt/ tr(Wt)
Let λit, xit be eigenvalues, eigenvectors of Pt, xit orthonormal
Choose xit with probability λit, pay cost xTitMtxit.
Wt+1 ← exp(−ε

∑t
k=1Mt)

end

4-1



(a) As usual, we will compare the expected cost of the algorithm with the cost
of the best possible fixed choice (that is, cost of a fixed vector u, ‖u‖ = 1).
Show that the expected cost of the algorithm is

T∑
t=1

Pt •Mt,

while the cost of the best possible fixed choice is

λmin

(
T∑
t=1

Mt

)
.

(b) Prove that if A is a matrix with 0 � A � I, then

exp(−εA) � I − (1− e−ε)A.

(Hint: Use Problem 1).

(c) Prove that for 0 ≤ ε ≤ 1/2, the expected cost of the algorithm is not much
more than the cost of the best possible fixed choice by showing that

T∑
t=1

Pt •Mt ≤
1

1− ε
λmin

(
T∑
t=1

Mt

)
+

1

ε(1− ε)
lnn.

It may help to know that for 0 ≤ ε ≤ 1/2, 1− e−ε ≥ ε(1− ε).

3. Prove the Sherman-Morrison formula, namely for X nonsingular and symmetric
and a vector v,

(X − vvT )−1 = X−1 +
X−1vvTX−1

1− vTX−1v
.

4. We say that a vector x ∈ <|E| is in the spanning tree polytope if
∑

(i,j)∈E x(i, j) =

n − 1, and for any set S ⊂ V ,
∑

(i,j)∈E(S) x(i, j) ≤ |S| − 1 (recall that E(S)

is the set of all edges with both endpoints in S). If x is in the spanning tree
polytope, then it can be written as a convex combination of spanning trees;
that is, if T is the set of all spanning trees in a graph G, and for spanning tree
T , χT ∈ {0, 1}|E| is the characteristic vector of the tree (that is, χT (i, j) = 1 if
(i, j) ∈ T and is 0 otherwise), then we can write

x =
∑
T∈T

αTχT

for some αT ≥ 0 such that
∑

T∈T αT = 1.

4-2



Given a point x in the spanning tree polytope, let Lx be the Laplacian associated
with the weights x, so that

Lx =
∑

(i,j)∈E

x(i, j)(ei − ej)(ei − ej)T .

In this problem we will show that it is possible to use some of the machinery of
the linear-sized sparsifier proof to pick a set F of n/2 edges such that∑

(i,j)∈F

(ei − ej)(ei − ej)T � 35Lx.

F will be a set, not a multiset. In what follows we assume that n ≥ 3. We will
use the algorithm below.

Algorithm 2: FindForest

A← 0
F ← ∅
u← u0 ← 20
∆u← 20/(n− 1)
U(u,A) ≡ tr((uI − A)−1)
while |F | < n/2 do

Pick (i, j) ∈ E − F such that F ∪ {(i, j)} is acyclic
F ← F ∪ {(i, j)}
A← A+ z(i,j)z

T
(i,j)

u← u+ ∆u
end
return F

(a) Show that there exist vectors z(i,j) with
∑

(i,j)∈E x(i, j)z(i,j)z
T
(i,j) = I (up to

our usual fudging about I) such that∑
(i,j)∈F

(ei − ej)(ei − ej)T � 35Lx

if and only if

λmax

 ∑
(i,j)∈F

z(i,j)z
T
(i,j)

 ≤ 35.

(b) Suppose we run the algorithm FindForest shown; note that it is essentially
the algorithm for finding a linear-sized sparsifier, but without the lower
bounds. In each iteration we must pick an edge e to add to F such that

4-3



e /∈ F , and adding e to F does not make F cyclic. We want to show that
such an edge must always exist as long as |F | < n/2.

Assume for the moment that we pick such an edge by sampling edge (i, j)
with probability x(i, j)/(n − 1). Show that with probability at least 7/8,
U(u+∆u,A+z(k,`)z

T
(k,`)) ≤ U(u,A) if we pick edge (k, `) via our sampling.

(c) Show that the probability we pick an edge already in F or an edge that
closes a cycle is at most 3/4.

(d) Conclude that it is possible in each iteration to pick an edge e to add to
F such that e /∈ F , and adding e to F does not make F cyclic, and such
that U(u+ ∆u,A+ zez

T
e ) ≤ U(u,A).

(e) Finish the proof by arguing that the chosen set of edges in F must be such
that ∑

(i,j)∈F

(ei − ej)(ei − ej)T � 35Lx.

4-4


