ORIE 6334 Bridging Continuous and Discrete Optimization Sept 25, 2019

Lecture 7

Lecturer: David P. Williamson Scribe: Chengrun Yang

1 Graph Laplacians

Let’s let e; € {0,1}™ be the standard basis vectors (1 in the i-th coordinate, 0’s else
where).
A Laplacian of an undirected graph G = (V, E),

Lo= ) (ei—ej)(es—e;)'.

(i,9)EF

Each term (e; —e;)(e; —e;) " is an |V| x |V| matrix that has +1 in the (4,4) and (j, )
coordinate, —1 in the (7,7) and (j,7) coordinate and the rest of the entries are all
zero. Now, we define the following notation:

e d(i): degree of i in G.
e D: diag(d(i)) is the |V] x |V diagonal matrix where D(i,7) = d (7).
e A: Adjacency matrix of graph A.

With this notation we can write Lo = D — A.
If G has weights w(i, j),V(i,j) € E, then the weighted Laplacian,

Lo= ) wii,j)(e—e)(ei—e;).

(i,7)EF

Define W = (w(i,j)) € R™™ where w(i,j) = 0 if (i,j) ¢ F and D = diag(d(i)),
where d(i) = > yepw(i,j). Then Lg = D — W. We will sometimes denote this
matrix by Lg .

An interesting and useful fact is that the Laplacian L is positive semidefinite.
Let’s briefly remember what this means, as well as some useful facts about such
matrices.

9This lecture note is a slight modification of the Fall 2016 version, scribed by Rahmtin Rotabi.
The previous version is derived from Lau’s 2015 lecture notes, Lecture 2 (https://cs.uwaterloo.
ca/~lapchi/cs798/notes/L02.pdf), Cvetkovié, Rowlinson, and Simié, An Introduction to the The-
ory of Graph Spectra, Section 7.4, and Mohar and Poljak, Eigenvalues in Combinatorial Optimiza-
tion, Sections 2.1 and 2.4.
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Definition 1 A matriz A € R™" is positive semidefinite, if v Ax > 0 for allx € R™.
If A is positive semidefinite we write A > 0.

Here are some relevant properties:
Fact 1 For a symmetric matriz A the following are equivalent:
(i) A= 0.
(ii)) A=VVT for some matriz V.
(iii) A has all non-negative eigenvalues.

We can now show that L is positive semidefinite, which we will do in two different
ways.

Claim 1 Lg = 0.

Proof:
First proof: Note Lg is symmetric. We observe that if A = 0 and B > 0 then
A+ B = 0, since

" (A+B)x=2"Ax+2 "Bz >0
for all z € R". Note that by (i), (e; —e;)(e; —e;)" = 0. So, by summing up all these
terms we will get L and based on the observation above we can say Lg = 0. U
Second proof: Also we know that for any x € R",

' Lox =" Z (ei—ej)(ei—e)) | x

(i,9)eE
= Z ' (e;—e;)(ei—e;) ' x
(i,9)eE

(x(i) = (j))

2 > 0.

= > (2(i) — 2(5))
(i,9)EF

= > (i) — 2(5))
(3,7)EE

OJ
We will usually write the eigenvalues of Lg, Ay < Ay < --- < )\, and since we
know that L is positive semi-definite we can write 0 < A < Ay < ... < A,
What is the spectrum of L7 We observe that e (all 1s vector) is an eigenvector
of eigenvalue 0 for L¢, since:

Lge = Z (ei—e;)(ei—e;) e = Z (e;—e€j)-0=0.

(i,5)EE (3,7)EE

Thus )\1 =0.
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2 Graph Laplacians and Connectivity

Now we switch our focus to g, which is much more interesting. We will see a very
close connection between Ay and various notions of the connectivity of the graph.

Theorem 2 )\ =0 iff G is disconnected.

Proof: If G is disconnected then, we can partition it into G; and Gy such that
there are no edges between GG; and G5. Furthermore, we can re-index the nodes so
that

_|Lg, O

L = { 0 LGJ '

Then both vectors - -

1 0

1 0

and
0 1

(where first |V, | entries of the first vector is 1 and the rest are zero and the opposite
for the second vector) will be eigenvectors of L and orthogonal to each other. Since
the eigenvalues associated with both vectors are 0, this implies that Ay = 0.

To see the other direction, let x5 be an eigenvector of eigenvalue A,. We can
assume (w9, e) = 0 and x5 # 0. If Ay = 0, then z) Gxy = x5 (Aa12) = 0. So then,

vy Lamy = (22(i) — 22(j))* = 0.

(i,7)EE

The summation of squared real values is 0, therefore each of them is equal to zero.
Therefore, x9(i) = x5(j) for all (i,j) € E. Consider V; = {i € V : x5(i) > 0} and
Vo ={i € V:uxy(i) <0}. It’s clear there are no edges between V; and V5. Since
(x9,e) = 0 and x # 0, there should be both positive and negative entries in xo which
proves that Vi # () and V, # (), and hence G has at least two components. O

The eigenvalue A\ is sometimes called the algebraic connectivity of G. The proof
above easily extends to prove the followng.

Claim 3 A\, = 0 iff G has at least k components.

We now show another connection between Ay and the connectivity of the graph

G.

Definition 2 k(G) is the vertex connectivity of G; it is the smallest nonnegative
integer such that we can remove up to K(G) — 1 vertices and associated edges from G
and G is still connected.
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We will show the following shortly. Let G — S be the graph that results from
removing the vertices in S from the graph, as well as all edges incident on the vertices
in S.

Lemma 4 My (Lg) < Mo(Lg_s) + |S|, for all S C V.
Note that we easily get the following corollary.
Corollary 5 X\o(Lg) < k(G).

Proof:  Let S be a set of vertices of size k(G) that disconnects G, thus |S| = k(G).
Then
/\Q(LG_S) =0= /\Q(G) <0+ K(G)

OJ
Proof of Lemma Let x5 be the eigenvector of Lg_g corresponding to
Mo(Lg_s), with 29z = 1, (z9,€) = 0.
Then we know

vyLary = Y (22(i) — 22(f))” = Ma(Lo—s)
(i,5)eE
for G — S = (V' E'). Note that x5 € RIV'I. We want a vector z € RIV! so we let
0, otherwise

T

With this definition z is a unit vector since, x' 2 = 24 25 = 1 and (z,€) = (z3,¢) = 0.

Then we have that

2"Lgz o' Lox

Xo(Lg) = i
2(Le) zeREl(g}e):o 2Tz = a2'x
=z Lox
= > (i) - 2(j))’
(i,7)EE
= > (a DD DNC y
(¢,4)€E’ i€S j:(i,5)€E
S SYTRURNTES 33 SRtAt
(i,9)eE’ i€S j:(i,j)€R
< Z (z2(1) — 22(5))* + Z 1 (29 has unit norm)
(i,))EE’ €S
= Xa(La-s) + 9]



3 Graph Laplacians and Cuts

We now see that we can get some easy bounds on various types of cuts in graphs by
using the eigenvalues of the Laplacian.

Definition 3 If |V| is even, let b(G) be the smallest bisection of G; that is

bG) = min 105,

where 6(S) is the set of edges with one endpoint in S and the other endpoint in V —S.

Claim 6 n
Z/\Q(G) < b(G).

Proof:  Let S be an optimal bisection. Let z € {—1,+1}" s.t.
. ~1, ifiesl
x(i) = o
+1, otherwise

Recall that
2" Laz

Ao =  min -
z€R™ (z,e)=0 Z2'Z

Note that (x,e) = 0 since half of the entries of x are —1 and half are +1. Therefore,

z" Loz (z(i) —z(5))* 1 _ 4
< - W Z R 2 — 250).
i T L as) = ua)

O
To conclude the lecture, we turn to the largest eigenvalue of the Laplacian, and
show that it has a connection to large cuts in the graph.

Definition 4 Let mc(G) be the mazimum cut in the graph, so that

me(G) = max|o(S)].

Then using the same idea as the proof above, we can show the following.

Claim 7
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Proof: Let S be a maximum cut and

2(i) = {—1, ifie S

+1, otherwise

n n

2 Lgz - 1 Lgx _ Z (z(i) — x(j))? _ 416(9) 4mc(G)‘
(1,9)€EE n

O
In fact, we can modify the bound above to give a tighter bound on the maximum
cut.

Claim 8

me(G) < %u:ﬁli?o M(Le + diag(u)),

where diag(u) is a diagonal matriz that diag(u)(i,i) = u(i).

Proof: Following the same definition of x as above, we get that

, 2" (Lg + diag(u))z
M(Le + diag(u)) = max po e

- z" Lox + 2" diag(u))x

_ Ame(G) + 3y u(d)a(i)”
_ 4me(G) "

)

n

since 2%(i) = 1 for all i € V, and >, u(i) = (u,e) = 0. O

This bound on the eigenvalue has a connection to other well-known bounds on the
maximum cut problem. For a given vector u such that (u,e) = 0, let A = A\, (Lg +u).
Define (i) = A — (u(i) + d(7)) for all ¢ € V, where d(7) is the degree of ¢ in G. Then
for adjacency matrix A, we have that

A+ diag(y) = N — (Lg + u).
Then we can see that A + diag(y) > 0 since for any x € R”,
" (A + diag(y))z = 2" (M — (Lg +u))z
=Mz -2 (Lg+u)x

> (Lg+u)z—z' (Lg +u)z
=0,
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where the inequality follows since A > 2" (Lg + u)z/2T2. Then we observe that

"3 = 25600 + ) + i)

eV

= 13700 + 3 )

eV eV
1 , 1
= 130 + 51
eV

Then finding a « to minimize § miny(y,e)—o An(Lg+diag(u)) turns out to be equivalent
to finding a v to minimize

1 L1

=) i) + 5| El,

4 - 2

eV

subject to

A+ diag(vy) = 0.

This is a semidefinite program, and it has a dual semidefinite program of maximizing
1
5 > -y
(i,))eE

subject to
:z:il-zlforalliEV, X:(.sz)i'o

This semidefinite program is used in a .878-approximation algorithm for the maximum
cut problem due to Goemans and W. Thus one can show that the eigenvalue bound
is a strong one; we also have that

me(G) > .878 - L '<mi§170 (L + diag(u)).
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