ORIE 6334 Bridging Continuous and Discrete Optimization Sept. 16, 2019

Lecture 4

Lecturer: David P. Williamson Scribe: Yicheng Bai

1 Recap

1.1 The Multiplicative Weights Algorithm

Assume there are N possible different decisions that could be made at each time. Let
ve(2) € [0, 1] denote the value of making decision 7 at time ¢. We maintain a weight w(7)
as a weight associated with decision ¢ at time ¢. Also let

N _wld)
Wt—Zwt(z), pe(i) = W,
i=1

We have the multiplicative weights algorithm as follows:

Algorithm 1: Multiplicative Weights
w(@) L Vi=1,....N
fort+ 1to T do
Pick decision ¢ with probability p:(i) and get value v(7)
w1 (i) <= (L4 eve(i))we (i), Vi=1,...,N
end

We know from last lecture that the expected revenue gained by Algorithm [1f is close
enough to the value one can gain from the best fixed decision in hindsight. Specifically, we
have the following theorem.

Theorem 1 Assume e < 1/2, then for all j,

r 1

T N
D> mliuli) = (1= Y w(j) =~ N.

t=1 i=1 t=1

1.2 Application: Finding e¢-Feasible Solution

We showed how to apply the multiplicative weights algorithm to finding e-feasible solutions
to the following system:

Ax <e, z€Q. (1)
where A € R™*" e € R™ is the vector of all ones, and @ C R" is a convex set. Assume

Az > 0 for each x € Q.
We also assume that we have an oracle such that given vector p € RY, finds z € @

such that pT Az < pTe, if such an z exists.

4-1

Define width of oracle to be:

p:= max max (Azx)(7).
i=1,...m x€EQ
returned
by oracle

By building on the multiplicative weights algorithm, there is an algorithm for this prob-
lem (Algorithm 2 in the last lecture) and we have the following theorem:

Theorem 2 The algorithm (Algorithm 2 in the last lecture) finds T € Q s.t. AT < (1+4e)e
m time m
O (—QP In m) +0 (% In m) (oracle calls + matriz multiplication).
€ €

2 Application: Max Flow in Unit Capability Graphs

To see an application of the result of the last section, we consider the maximum flow problem
in directed graps. Let G = (V, E) be a directed graph, let s € V' be the source and t € V
be the sink. The capacities are u(i,j) = 1, V(i,j) € E . The goal is to find the maximum
flow from source s to sink ¢ in this directed graph G.

A maximum flow is an optimization problem, and the results of the previous section only
check feasibility of a system. How can we reduce this optimization problem to a feasibility
problem? The idea is to check if there is a feasible flow of value k. Specifically, we can
use binary search to find max flow value, since the value is at most m = |F|, we only need
[logy m| calls checking for a feasible flow.

Now we show how to reduce the problem of determining whether there exists a feasible
flow of value k£ to the framework given above. We let A be capacity constraints such that
x(i,7) <1 for all (i,7) € E, hence A is the identity matrix. We let) be flow conservation
constraints, and the flow value. We have that:

Q=Kx>0: Z x(i,j) — Z x(j,1) = 0,Yi # s, t; Z x(s,j) — Z z(j,s) =k

J:(4.5)€E J:(Gi)EE Ji(s.4)EE Jj:(4,s)EE

So there exists z € Q) such that Ax < e iff a feasible flow of value k exists.

We now need an oracle that checks if 3z € @ s.t. p” Az < pTe for p > 0. Note that in
this case p Ar = > i.j)er P(i,7)x(i,j). Then we can directly find € @ that minimizes
pl Az = >_(i.j)er P(i, 7)x(i, j) by finding shortest s—t path when using p(7, j) > 0 as lengths,
and sending k units of flow on this path. Since all the lengths p(i, j) are non-negative, we
can use Dijkstra’s algorithm in O(m + nlogn) time to find the shortest path.

Here, the oracle width is p < k < m.

So the running time would be (by Theorem 2):

m? m ~ (m?
O <€21nm+ 62(m+nlogn)> =0 (€2> .

This running time is not very good for this problem. There are classical flow algorithms find-
ing exact solutions (rather than approximate ones) in O(m?/?) time (and faster algorithms
have been found recently). However, the point was to illustrate a use for the algorithm of
the previous section.

4-2

3 Application: Max Multicommodity Flow

We now turn to another application of the multiplicative weight algorithm, now to the
maximum multicommodity flow problem. Let G = (V, E) be a directed graph. There are
K source-sink pairs s; — t1, so — ta, ---, Sx — tx. u(i,j) > 0 represents the capacity of an
edge. The goal is to find s; — t; flow f; for each 7 that maximizes Z,I::l(value of flow f;)
subject to the constraints that Zszl (i, j) <wu(i,j), for all (i,j) € E.

Note that there is nothing similar to integrality property or max-flow min-cut theorem
for this problem.

Let Pp = set of all s — t; paths and P = Ulepk.

We can formulate this problem in terms of linear programming, in which we have a
variable z(P) representing the amount of flow sent on path P € P.

max Z z(P)

pep

s.t. > a(P) < uli, j) (P)

Its dual can be written as:

min > u(i,), §)
(i,9)€EE

s.t. Z ((i,j)>1 forany Pe€ P (D)
(1,5)eP
(i, 7) >0

Then we have the following algorithm[] for this problem as follows:
Let P, be path chosen in iteration ¢, wy(, j) be weights in iteration ¢, u; be u in iteration
t, we = 3 e wi(i, j), and T be number of iterations. Let X be the value of flow we

compute, which is Y1 u; = > pep o(P). Let X* = value of max flow.

First observe that this algorithm does not compute a feasible flow; the value of flows on
edges can and will be larger than the capacity of the edges. We will explain later how to
find a feasible solution by scaling all the flows down by the same value.

Next observe that Algorithm [2| looks like multiplicative weights algorithm when

(i, j) = { @) Vv (i,j) € P,
0, otherwise

pt(1’7]) = Wt

!This algorithm was first proposed by Garg and Koénemann 1998 http://pure.mpg.de/rest/items/
item_1819555/component/file_2574820/content and then restated by Arora, Hazan, and Kale 2012 http:
//theoryofcomputing.org/articles/v008a006/v008a006.pdf.

4-3

http://pure.mpg.de/rest/items/item_1819555/component/file_2574820/content
http://pure.mpg.de/rest/items/item_1819555/component/file_2574820/content
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf
http://theoryofcomputing.org/articles/v008a006/v008a006.pdf

Algorithm 2: Find Max Multicommodity Flow
x(P)+ 0, VPP
10,9) < 0, w(i,j) < 1, ¥(i,j) € E
while L6 < Ibn (i, j) € B do
Find P € P that minimizes % (which can be done by computing
(i,5)ep
Sk — ti shortest path for all k using lengths %)
u 4 ming jyep u(i, j)
z(P) + xz(P)+u
f(i.9) < f(i,)) +u, V(i,j) € P
w(zvj) (1+6u(1])) (17,7)7 V(z,])eP

end

Given that this is the case, we can simply apply Theorem 1, and obtain that for all edges
(h,k) € E:

d wt wy(4,5) S 1
> >(1—¢) w(h k)ﬂ(h,k)ePt —-lm

— u(i wy —
t=1 (i,j)eP; =

Now consider the dual solution for iteration ¢:

’Ll)t((l,j))
Et(lv.]): Ul’]w ab)
E(a,b)ePt ut((ai)))

The solution is feasible, since for any path P € P:

Cper i)
> 4g) = S

we(a,b) —
(i.5)epP Z(a,b)GPt ut(a,b)

where the inequality holds since P, is the shortest path at iteration t. Since the dual
objective function value is always an upper bound of the primal value, we have:

X < Z (4, 5)0(i,7)
(i.4)eE

o Z(ZJ)GE wt(za])
- we(a,b
Z(a,b)ePt ut((a,b))
- @

- we(a,b)
Z(a,b)GPt ut(a,b)

4-4

Thus, the left hand side of inequality (1) can be written as:

. T .o
B U we(i, 7)
tz;(l%e:a “J t—zl W (i,%e:Pt u(i, j)
T
M
- X ©

where the inequality follows from (2).
Combining (1) and (3), we have that for all (h,k) € E:

X flhk) 1
2 U=dimm "o mm

Let C = max f(hl]zg
(h,k)EE

loop in algomthm
Let Z(P ==+ for all P € P; we claim that then Z is a feasible solution to the primal
problem. Wlth the notion of C'; we can further have:

we have that C' > mm by the termination criterion of the while

X 1
> (1 — _Z

>+ 2 (1—¢)C ; Inm
>(1—¢)C —eC
= (1 —2¢)C.

So our feasible flow has value % > (1—2¢)X™.
For running time analysis of Algorithm

1. Each edge can be the edge s.t. u(i,j) = u at most 6% Inm times. Thus there are at
most (’)(mlﬂ) iterations.

2. Within each iteration, we need to find K shortest paths.

3. Thus, the total running time is (’)(7 (m + nlogn)). Fleishcher (2000) eliminated
the dependency on K and improved the running time to be O(% (m +nlogn)) http:
//epubs.siam.org/doi/pdf/10.1137/50895480199355754.

4-5

 http://epubs.siam.org/doi/pdf/10.1137/S0895480199355754
 http://epubs.siam.org/doi/pdf/10.1137/S0895480199355754

	Recap
	The Multiplicative Weights Algorithm
	Application: Finding -Feasible Solution

	Application: Max Flow in Unit Capability Graphs
	Application: Max Multicommodity Flow

