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Lecture 22
Lecturer: David P. Williamson Scribe: Renee Mirka

1 Discrepancy Minimization Problem and History

Given a collection of sets Si,...,S, C {1,2,...,n}, the goal of the minimum dis-
crepancy problem is to find x : {1,...,n} — {£1} to minimize

e

In 1985, Spencer gave a nonconstructive proof that there exists y such that
max;—1__m |X (S:)| < O(y/nlog(2m/n)) when m > n. This was followed by an SDP-
based randomized polytime algorithm achieving Spencer’s bound by Bansal in 2010.
Our focus of today’s lecture will be the following result from Lovett and Meka in
2012:

Theorem 1 Let vq,...,v, € R” be vectors with ||v;|| < 1 for all i, xy € [—1,1]"
and M1, ..., A > 0 be parameters such that ;" exp (—A?/16) < n/32. Then we can
compute x € [—1,1]" such that (v;,x — xo) < 11\; for all i and |[{j : x(j) = £1}| >
n/2.

We will show how this result implies Spencer. But first, consider a polytope
P={xe[-1,1]": (v, z — x9)| < \;}. Lovett and Meka’s procedure was to start at
xo and take a random walk in P. Once the walk hits a face (i.e. x(j) =1,x(j) = —1,
or [{v;,x — xg)| = \;) the walk ‘sticks’ to it, and will eventually reach the desired
point. Rothvoss modified this idea slightly in 2014. Instead of choosing a random
walk, start at zy, go in a random direction, and find where this direction intersects
P. This intersection point is the desired point with some constant probability.

Today: we will see a deterministic, multiplicative weight style algorithm by Levy,
Ramadas, Rothvoss (2017).

2 Theorem 1 Implies Spencer’s result
First we show how the theorem implies Spencer’s result. Consider the following

algorithm.
Observations:
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Algorithm 1: Spencer Bound

%
Ty < 0,
for s+ 1,...,logyn do
As = {jeln]: -1 <xz(j) <1

— ie Isin js.t. j € S;N A0 otherwise);

V; 1g
) \/m SiNAs (

)\i<—c,/lnﬁ4—7j‘,i:1,...,m;

Run alg to get x5 € [—1,1]" s.t.
xs(j) - $5_1<j)vj ¢ As: <U¢,l’s - xs—l) S 11)‘2,

end
return T = Ty, 5

T e {£1}"

llvs|| <1 for all i.

[

< 2m A .
16 1 TAsT % for good choice

The theorem applies since 37 e /16 = 3" e~
of c.

|As] < n/2571 for all s.

If we have that (v;, x5 — xs_1) < 11);, then

S [r) — ma()] < O (\/ Al (@—ﬁ))

JES;

for all s. By summing over all s, we get that

s Eol () o ({(2)

JES;

since the first term dominates.

3 Algorithm to Prove Theorem 1

Assume WLOG \; < 24/n, since if \; > 2y/n, (v;,x — x9) < \; does not intersect
[—1,1]". (In other words, the constraint doesn’t do anything.)

Definition 1 Let § = 1/\; be the step size and p; = exp(—ﬁ) <1 be the discount
factor.
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The algorithm will run for O(n/§?) iterations = O(n?) iterations.

Algorithm 2: Lovett-Meka

wo(i) <+ e M Vil = 7 wo(i) < n/32);

for t < 1 to oo do
Pick unit vector z; in the span of {e; : —1 < x4(j) < 1},
of eigenvectors of 1on largest eigenvalues of M, = 37" wy(i)viv]
and L to zy,
to v; for {57 that have largest weights w;(7),
to v; for ¢ with A\; <1, to D7 Nwq (i) pivs;
Choose max «y € (0,1] s.t. 2441 =z + 0z € [—1,1]™;
Wiy (1) < wy (1) exp(Nd (v, apze)) pi;
if [{j:—1<x41(j) <1} < § then

stop;

end

end

Note: wy (i) = exp (Ai{v;, 2, — @) - pt - e~ so the weights are exponentially large
in the amount by which a constraint is violated, but with discount factor.

Lemma 2 For all iterations t, we can always pick z;.

Proof: = We are picking z; from a space of dimension > n/2 —n/16 and orthogonal
to a space of dimension < 14n/16+n/16+1 since 1 e /16 < L and e~1/16 > 1/2
implies that [{i : \; < 1}| < n/16. Therefore, we pick z; from a space of dimension
>n/2—n/16 —n/16 —n/16 —2 > Zn—2 > 1 for n > 10. O
Lemma 3 The algorithm terminates after O(n/6%) iterations.

Proof:  [lzi||” = [lo 4 deuzl|® = o]l + 200 (wy, 21) + 620|242 = ||| + 6%,
since z; is orthogonal to z;. If ay = 1, ||zey1||* = [|z¢||* + 6% We can have a; < 1
at most n times, since each such time x;,1(j) € {£1} for some new index j. Since

z € [—1,1]", ||z¢||* < n. Therefore, the total number of iterations is at most n+mn /6%
O

Let W, = > w(i). The following is the Main Lemma.
Lemma 4 W, < W, for all t.
Note this lemma all says W; < n/32 for all ¢. Let T" denote the final iteration.

Lemma 5 wy(i) <2 for alli.

22-3



Proof: Suppose otherwise. Let t* be the last iteration for which ¢ is not among
the n/16 highest weights. After ¢*,

w1 (1) = wi () exp( N0 (vi, apze)) pi = wi (i) pi,

since z; will be chosen orthogonal to v; when w;(i) is among the n/16 highest weights.
This shows that wy1(i) < wy(i) for ¢ > t*. So,

2 <wp(i) < wpy1(1) = we (1) exp( N0 (i, arze) ) pi < wes(1)e,

since ||lvg|| <1, ay < 1, ||zl = 1, and \;0 < 1. Therefore wy(i) > 2/e; since 4 isn’t
among the n/16 highest weights, there exist n/16 j such that w(j) > 2/e. But this
means Wy > (n/16)(2/e) > n/32, which contradicts the main lemma. O

Theorem 6 (v;,T — zg) < 11\;.

Proof: If \; < 1, then by construction z; L v; for all ¢, so that (v;, T—xg) =0 < ;.
Otherwise,
wr(i) = exp(\i(v;, T — wo))ple ™ < 2.

Taking the log of both sides,

46202

Ni{vr, T — xo) + T'ln (exp(— )) — A2 <In2.

From here we see

In2

(0;, T — xg) < A

1

2
+ N\ (1 +4T5—) <24 M(148) <11
n

For the penultimate inequality, we recall that \; > 1, T <n+n/é* and 6 <1. O
The next lemma will help prove the main lemma.

Lemma 7 For any possible z;, 2zl Mz < % o w (1) A7
Proof: tr(M;) = Do, we(i)A2 tr (vol) = Yo7, we(i) A Since M, = 0, at most
n/16 eigenvalues can have value at least 28 tr(A,). Therefore, z is in the span of

cigenvectors of M, of eigenvalue at most £ tr(M,), so zf Myz, < 283" wy(i)A?. O
Lastly, we provide the proof of the main lemma (Lemma 4).
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Proof:

m

Wi = Zwtﬂ(i) = Zwt(i) exp (Nid(vi, rzt)) ps
i=1

i=1
< Zwt(z’) (14 X6 (v, apze) + A7 (vy, oztzt>2) -pi, using e* <1+ +2? for 2| <1
= Z we(i)p; + (5(2 Nwy (1) pivi, ze) + 02 Z wy (1) A2 i (vi, v 2e)?
i=1 i=1 i=1

= Zwt( )-pi + 6%z Mz,  using z L Z Aiwy () piv;

=1

'MS

ﬁ
Il
—

p,—|—5—2wt )\2

, _ 46202 Y
we(i) = Wy, using p; = exp(— " ), since e <1—x/2for0<az<1.
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