
ORIE 6334 Bridging Continuous and Discrete Optimization Nov 20, 2019

Lecture 20
Lecturer: David P. Williamson Scribe: J. Carlos Martinez

1 Recap

In the previous lectures, we explored the problem of finding spectral sparsifiers and
saw both deterministic and randomized algorithms that, given a graph G with n
vertices, find a spectral sparsifier with O

(
n logn
ε2

)
edges. In this lecture1, we improve

upon this result to find linear-sized spectral sparsifiers, or more concretely, spectral
sparsifiers with O

(
n
ε2

)
edges. This result is due to Batson, Spielman, and Srivastava

[2].
This result is interesting since since we noted in the past that a spectral sparsifier

is a generalization of the cut sparsifier of a graph. The best results known results for
cut sparsifiers (prior to this one) were that a cut sparsifier with (n logO(1) n)/ε2 edges
can be found in nearly linear time [1].

2 The Main Result

Recall that given a graph G = (V,E), a weighted graph H = (V,E ′) with weights
w(i, j) is an ε-spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG.

In the last lecture we showed that

(1− ε)LG �
∑

(i,j)∈E

w(i, j)(ei − ej)(ei − ej)T � (1 + ε)LG

if and only if

(1− ε)I �
∑

(i,j)∈E

w(i, j)x(i, j)x(i, j)T � (1 + ε)I

for x(i, j) = L
†/2
G (ei − ej) and

∑
(i,j)∈E x(i, j)x(i, j)T = I∗. Recall that I∗ is our

continuing fudge of an identity matrix, which is actually LGL
†
G. For any vector v

such that vT e = 0, I∗v = v.

1This lecture is derived from Spielman 2015, Lecture 18, which can be found at http://www.

cs.yale.edu/homes/spielman/561/lect18-15.pdf. These notes are partially based on Shijin Ra-
jakrishnan’s notes from the 2016 iteration of this class.

20-1

http://www.cs.yale.edu/homes/spielman/561/lect18-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect18-15.pdf

The goal is to show that given v1, · · · , vm such that
∑

i∈[m] viv
T
i = I (i.e., the

vectors are in isotropic position), there exists S ⊆ [m] and weights wi ≥ 0 such that
|S| = dn/ε2e and

(1− ε)2 �
∑
i∈S

wiviv
T
i � (1 + ε)2I.

For any symmetric A and vectors v1, · · · , vm in isotropic position we have

m∑
i=1

vTi Avi =
m∑
i=1

(viv
T
i) · A =

(
m∑
i=1

viv
T
i

)
· A = I · A = tr(A).

In this lecture, we prove a weaker version of the theorem first and then mention
how to extend it to the general case. The version we prove is as follows.

Theorem 1 Given vectors v1, · · · , vm in isotropic position, we can find a subset S ⊆
[m] and weights wi ≥ 0 such that |S| ≤ 6n and

1√
13n

I � 1√
13n

∑
i∈S

wiviv
T
i �
√

13I.

3 The Algorithm

The basic idea behind the algorithm is that we greedily pick vectors and weights such
that we control how the maximum and minimum eigenvalues change.

Algorithm 1: Linear sized spectral sparsifier.

l← −n;
u← n;
∆l← 1/3;
∆u← 2;
wi ← 0 for all i;
A← 0;
for k = 1, · · · , 6n do

Pick vi, c such that λmin(A+ cviv
T
i) ≥ l + ∆l and

λmax(A+ cviv
T
i) ≤ u+ ∆u;

wi ← wi + c;
A← A+ cviv

T
i ;

l← l + ∆l;
u← u+ ∆u;

end
return A

20-2

Initially, A = 0, λmin(0) = 0 ≥ −n and λmax(0) = 0 ≤ n. At termination,
λmin(A) ≥ −n + 1/3(6n) = n and λmax(A) ≤ n + 2(6n) = 13n. We scale down the
matrix by

√
13n, which gives the result.

4 Barrier Functions

We will not work with λmax and λmin directly. Rather, we will use barrier functions2.
Let

U(A, u) =
n∑
i=1

1

u− λi
= tr((uI − A)−1)

and

L(A, l) =
n∑
i=1

1

λi − l
= tr((A− lI)−1)

for l ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ u, where λi is the ith eigenvalue of A.
Initially, l0 ≤ λmin(A0) ≤ λmax(A0) ≤ u0. Then, U(A0, u0) and L(A0, l0) are

positive and bounded. We will make sure the barrier functions do not increase as
the algorithm progresses. We also need to make sure that the barrier functions don’t
go through the discontinuities at u = λmax and l = λmin. Then, l ≤ λmin(A) ≤
λmax(A) ≤ u throughout. Clearly,

U(A0, u0) =
n∑
i=1

1

n− 0
= 1

and

L(A0, l0) =
n∑
i=1

1

0− (−n)
= 1.

In each iteration, we want to find c, vi in each step such that

U(A+ cviv
T
i , u+ ∆u) ≤ U(A, u) ≤ 1

and

L(A+ cviv
T
i , l + ∆l) ≤ L(A, l) ≤ 1,

so that the barrier functions do not increase as we update A, u, l through the run of
the algorithm. We also need to make sure, as pointed out, that the barrier functions
don’t go through the discontinuities. However, we will focus on making sure that the
functions do not increase.

2In the original paper due to Batson, Spielman, and Srivastava, as well as other notes on their
result, the notation Φu(A) is used for U(a,A) and Φl(A) is used for L(l, A).

20-3

5 The Analysis

We now turn towards proving that such a selection of v and c can be made in each
iteration of the loop. We will show that there exists matrices UA and LA such that
the following two lemmas hold.

Lemma 2 There are matrices UA, LA such that the barrier functions do not increase
in an iteration. Namely, the barrier functions do not increase for c, v if vTUAv ≤
1
c
≤ vTLAv.

Lemma 3 For the choices of UA, LA from Lemma 2,

m∑
i=1

vTi UAvi ≤
1

∆u
+ U(A, u) ≤ 1

∆l
− 1

1/L(A, l)−∆l
≤

m∑
i=1

vTi Avi.

From our choice of parameters we obtain

1

∆u
+ U(A, u) ≤ 1

2
+ 1 =

3

2

and

1

∆l
− 1

1/L(A, l)−∆l
≤ 3− 1

1− 1/3
= 3− 3

2
=

3

2
.

Then, by Lemma 3 we have

m∑
i=1

vTi UAvi ≤
3

2
≤

m∑
i=1

vTi Avi.

This implies that ∃vi, c such that

vTi UAvi ≤
1

c
≤ vTi Avi.

Then, Lemma 2 ensures that there exists a vector vi and weight c so that we can add
cviv

T
i to A without increasing the barrier functions. It only remains to prove the two

lemmas.
To prove Lemma 2, we first analyze what the addition of cvvT does to the matrix

A, by using the following formula.

Theorem 4 (Sherman-Morrison formula) For X non-singular and symmetric,
and a vector v,

(X − vvT)−1 = X−1 +
X−1vvTX−1

1− vTX−1v
.

20-4

The formula expresses a rank-1 update to the inverse of a matrix. We now prove
Lemma 2.
Proof:

Note how U(A, u) changes as we add cvvT to A. Namely,

U(A+ cvvT , u) = tr
(
(uI − A− cvvT)−1

)
= tr

(
(uI − A)−1

)
+ c

tr
(
(uI − A)−1vvT (uI − A)−1

)
1− cvT (uI − A)−1v

= U(A, u) + c
tr
(
(uI − A)−1vvT (uI − A)−1

)
1− cvT (uI − A)−1v

= U(A, u) + c
vT (uI − A)−2v

1− cvT (uI − A)−1v
.

The second inequality follows from the Sherman-Morrison formula, the third by the
definition of U(u,A), and the fourth by the cyclic property of the trace.

So as we add cvvT , the barrier function increases. To counteract this, we increase
the value of u so to keep the barrier function constant. Let û = u+ ∆u. Then,

U(A+ cvvT , û) = U(A, û) + c
vT (ûI − A)−2v

1− cvT (ûI − A)−1v

= U(A, u)− (U(A, u)− U(A, û)) + c
vT (ûI − A)−2v

1− cvT (ûI − A)−1v
.

We want that U(A + cvvT , û) ≤ U(A, u), so we want that U(A, u) − U(A, û) ≥
c vT (ûI−A)−2v
1−cvT (ûI−A)−1v

. In turn, this means that we want

1

c
≥ vT (ûI − A)−2v

U(A, u)− U(A, û)
+ vT (ûI − A)−1v

= vTUAv,

where we let

UA =
(ûI − A)−2

U(A, u)− U(A, û)
+ (ûI − A)−1.

The proof for L is similar with

LA =
(A− l̂I)−2

L(A, l̂)− L(A, l)
− (A− l̂I)−1.

2

20-5

(Extended aside: Although we didn’t cover this in lecture, the following argument
was provided by Jason Gaitonde about why the barrier functions don’t cross their
discontinuous points. We show above that

U(A+ cvvT , û,) = U(A, û) +
cvT (ûI − A)−2v

1− cvT (ûI − A)−1v
.

As a function of c for a given v, the discontinuity happens when the denominator hits
zero. Thus, the discontinuity happens when

1/c = vT (ûI − A)−1v.

But UA � (ûI −A)−1 as it is the sum of that and another positive definite matrix, so

vTi (ûI − A)−1vi < viUAvi ≤ 1/c.

Thus as you vary c from 0 to the value we found, you never cross the pole, or equiv-
alently the largest eigenvalue doesn’t cross û.

The reason L(A, l) doesn’t have continuity issues is actually easier and for a dif-
ferent reason. Inductively, L(A, l) ≤ 1; in particular, this implies that 1

λmin(A)−l ≤ 1,

or equivalently, λmin(A)− l ≥ 1 (the inequality doesn’t flip as λmin(A)− l > 0). But
l̂ = l + 1/3 in the algorithm, so λmin(A) − l̂ ≥ 2/3, so as a function of l, updating
l does not cause you to cross the pole at λmin(A). The point is the ∆l jumps are
chosen cleverly enough to ensure that it doesn’t cause the lower barrier to jump the
smallest eigenvalue, even without updating by cvvT . Updating A to A + cvvT only
increases the eigenvalues for all nonnegative c, so you move in the right direction with
no potential continuity issue in the potential function. Without this continuity issue,
the choice of c then bumps down L(A + cvvT , l̂) by enough to retain the invariant
that the barrier be at most 1, so you’ll be safe to update l in the same way in the
next step, and so on.)

We now turn to the proof of Lemma 3.
Proof: To bound the first term, note that

d

du
U(A, u) =

d

du

n∑
i=1

1

u− λi
= −

n∑
i=1

1

(u− λi)2
= −tr((uI − A)−2)

and so the function is decreasing. Since the vectors vi are in isotropic position, we
then get that

m∑
i=1

vTi UAvi = tr(UA)

=
tr((ûI − A)−2)

U(A, u)− U(A, û)
+ tr((ûI − A)−1)

≤ tr((ûI − A)−2)

U(u,A)− U(û, A)
+ U(u,A).

20-6

Likewise,

d2

du2
U(A, u) = 2

n∑
i=1

1

(u− λi)3
> 0

and so the function is convex. In particular, convexity implies that

U(u,A)− U(û, A) ≥ (−∆u)
d

du
U(û, A) = ∆u · tr((ûI − A)−2),

which yields

tr((ûI − A)−2)

U(u,A)− U(û, A)
≤ 1

∆u
.

Putting everything together we get that

m∑
i=1

vTi UAvi ≤
tr((ûI − A)−2)

U(u,A)− U(û, A)
+ U(u,A) ≤ U(A, u) +

1

∆u
.

The proof of the lower bound is similar, but slightly uglier and more involved.
While we did not cover it in class, we include it here for completeness. In this case,
we have

m∑
i=1

vi
TLAvi = tr(LA)

=
tr((A− l̂I)−2)

L(l̂, A)− L(l, A)
− tr((A− l̂I)−1)

=
tr((A− l̂I)−2)

L(A, l̂)− L(A, l)
− L(A, l̂).

Now,
d

dl
L(A, l) =

d

dl

n∑
i=1

1

λi − l
=

n∑
i=1

1

(λi − l)2
= tr((A− lI)−2),

and
d2

dl2
L(A, l) = 2

n∑
i=1

1

(λi − l)3
> 0,

and thus L(A, l) is increasing and convex in l. Then by convexity,

L(A, l)− L(A, l̂) ≥ −∆l
d

dl
L(A, l̂) ≥ −∆l tr((A− l̂I)−2).

20-7

Rearranging terms, we get

tr((A− l̂I)−2)

L(A, l̂)− L(A, l)
≥ 1

∆l
.

To bound the second term, we claim that

L(A, l̂)− L(A, l)

∆l
≤ L(A, l)L(A, l̂).

If the claim is true, then by rearranging terms we get

L(A, l̂) ≤ 1

1/L(A, l)−∆l
,

as desired. To prove the claim we observe that

L(A, l̂)− L(A, l)

∆l
=

1

∆l

n∑
i=1

[
1

λi − l̂
− 1

λi − l

]

=
1

∆l

n∑
i=1

[
λi − l − (λi − l̂)
(λi − l)(λi − l̂)

]

=
1

∆l

n∑
i=1

[
∆l

(λi − l)(λi − l̂)

]

=
n∑
i=1

[
1

(λi − l)(λi − l̂)

]

≤

[
n∑
i=1

1

λi − l

][
n∑
i=1

1

λi − l̂

]
= L(A, l)L(A, l̂),

as long as l ≤ λmin, as we have been guaranteeing. 2

To get the stronger result, we change the parameters ∆u and ∆l and we end up
proving that

tr(LA) ≥ 1

∆l
− L(A, l),

instead of

tr(LA) ≥ 1

∆l
− 1

1/L(l, A)−∆l
.

That proof is even messier.
Having seen the correctness of the algorithm, we turn towards the question of its

run time. The general usage of a spectral sparsifier is to reduce the dependence of

20-8

the runtime of algorithms that depend on the number of edges by creating a sparse
approximation. The algorithm described runs far too slowly to realize gains using
a sparsifier for cut algorithms (for instance). The faster algorithm due to Lee and
Sun [3], constructs a sparsifier with O(n/ε2) edges in Õ(m/εO(1)) time. Their barrier
functions are

U(A, u) =
n∑
i=1

exp

(
1

u− λi

)
and

L(A, l) =
n∑
i=1

exp

(
1

λi − l

)
.

An open research question is if we can get a O(n/ε2) cut sparsifier by a greedy
algorithm.

References

[1] Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Pani-
grahi, A General Framework for Graph Sparsification. Proceedings of the Forty-
Third Annual ACM Symposium on the Theory of Computing, pp 71-80, 2011.

[2] Batson, Joshua and Spielman, Daniel A and Srivastava, Nikhil. Twice-Ramanujan
sparsifiers. SIAM Journal on Computing, 41(6), pp 1704-1721, 2012.

[3] Lee, Yin Tat and Sun, He. An SDP-based algorithm for linear-sized spectral sparsi-
fication. Proceedings of the Forty-Ninth Annual ACM Symposium on the Theory
of Computing, pp 678-687, 2017.

20-9

	Recap
	The Main Result
	The Algorithm
	Barrier Functions
	The Analysis

