ORIE 6334 Bridging Continuous and Discrete Optimization Nov 4, 2019

Lecture 15
Lecturer: David P. Williamson Scribe: Abhishek Shetty

1 Iterative Methods

For a graph G and a supply vector b, we would like to solve the linear system Lgp = b
for the potential p. We would also like to construct algorithms that take advantage
of the sparsity of G. Even writing down LTG explicitly takes O (nz) time and space.
This motivates us towards exploring iterative methods for solving linear systems of
equations. To solve a linear system Ax = b, iterative algorithms only involve mul-
tiplication of a matrix A with vectors, and for a matrix A whose sparsity is m, this
can be done in time O(m). One disadvantage of such methods is that unlike other
methods like Gaussian elimination, this only returns an approximate solution, the
gap becoming smaller the longer the algorithm runs. However, they are quite fast
and require a low amount of space.

The basic idea behind iterative methods is that to solve a system of linear equa-
tions Ax = b, where A is symmetric and positive definite, we start with a vector x°,
perform the linear operation A on it (along with some vector additions) to get x*,
and iteratively keep performing these operations to get the sequence x°,x!, ..., x* and
we stop when x* is sufficiently close to the vector x* which satisfies Ax* = b. The
exact details will be outlined below, but we can see that the only expensive operation
is multiplying by the matrix A, which is fast if A is sparse.

Before we dive into the algorithm, we note that if Ax* = b, then for any scalar «,
we have aAx* = ab, rearranging which gives us

x* = (I — aA)x" + ab.

This tells us that x* is the fixed point of the affine transformation indicated by
the equation, and naturally leads to an iterative algorithm, called the Richardson
Iteration. Formally, consider the following algorithm.

Algorithm 1: Richardson Iteration
Xg < 0
fort < 1 to k do
x¢ < ([— aA)x¢_1 +ab

9This lecture is based on scribe notes by Shijin Rajakrishnan for a previous version of this course
and Lecture 12 of Daniel Spielman’s course on Spectral Graph Theory.

15-1

https://people.orie.cornell.edu/dpw/orie6334/Fall2016/lecture15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect12-15.pdf
http://www.cs.yale.edu/homes/spielman/561/

Remark 1 Note that if we rewrite our linear system as AY*x = A™'?b (assuming
A is invertible), then the Richardson iteration is equivalent to gradient descent for the

2
square loss % ‘Alﬂx — A7Y2b|| with step size a.
2

In order to analyze the algorithm, consider the following definition.

Definition 1 (Spectral Norm) Given a matriz M, define its spectral norm as

M
I34] = sup VXl
o T

When A is symmetric, this can also be equivalently defined as
0] = max s
where p; are the eigenvalues of M.

Suppose that A\; < Ay < --- <)\, are the eigenvalues of the matrix I — aA. Then
the eigenvalues of] —aA are 1 —aX\; > 1—ady > --- > 1—a),, and thus

|1 — aA|| = max |1 —)| = max (|1 — @], [1 — a\,))

.. C .. 9 . : . 1 _ _2M
This is minimized when we take o = =, yielding [|[I — oAl =1 — %4

Now we turn to the analysis of the convergence of the Richardson Iteration.

v — 2y = [(I — aA)z, + ab] — [(I — @A)z, + ab]
= —ad)(xy —x41)
= (I — aA)y(xs — 24 9)
= (I — aA)"(z, — x0)
= (I — aA)'z,.

We define x* to be close to the x* when the norm of their difference is a small
fraction of the norm of x*. Then

Ix* = x| = [[(7 = 2 d)'x7|
< (7 = aA)|l[Ix7]

oA)\’
=(1- *
(AHM”) (bl

—2)\t
< exp —) Ix"Il
AL+ A,

15-2

where the final step used the fact that 1 —x < e *. We set
)\1 +)\n 1)\n 1 1
t= In{-)=(=—+=]In|-
2 n(e) <2>\1+2) n(e)’

" — x| < eflx"]].

so that we obtain

We can see that the speed of convergence, i.e the number of iterations required to
get close to the solution to Ax = b, depends on the ratio of the largest and smallest
eigenvalues, :\\—’11, and that the larger it is, the longer it takes for the algorithm to

converge to the approximate solution.

Definition 2 For a symmetric, positive definite matriz A with eigenvalues Ay < Ay <
... <\, its condition number is defined as

An

k(A) = N

This algorithm was just one of the examples of an iterative methods to find an
approximate solution to a linear system. There are other, faster methods (such as
the Chebyshev method and Conjugate Gradient) that find an e-approximate solution

in O (Mln (%)) iterations.

2 Preconditioning

We can see that if we modify the initial problem so that the condition number de-
creases, then the algorithms will run faster. Of course, since we change the problem,
we need to worry about the implications on how far the new solution is from the old,
and how the algorithm changes by changing the initial matrix. First, let us setup
some notation.

Definition 3 Given a matriz M, we say that M > 0 iff M is positive semidefinite.
Given a pair of matrices A and B, we say B> A iff B—A >0

One such idea is precondition the matrix. For a matrix B = 0 (or B > 0) that
is symmetric and has the same nullspace as A, instead of solving Ax = b, solve
B'Ax = B'b. Now we apply the iterative methods to the matrix BT A. This provides
an improvement because we will prove that for a careful choice of B, we can reduce
the condition number of the new matrix, and thus approximate the solution faster.

For solving Lgp = b, we precondition by LL, where H is a subgraph of G. In
particular, we precondition by L; where 7' is a spanning tree of G. This idea is at-
tributed to Vaidya ([I]). Now the relevant condition number is A, (L} Lg) /Ao (LhLe):
We know that the smallest eigenvalue is zero, and thus look at the smallest positive
eigenvalue for the condition number, which assuming the graph is connected is \s.

15-3

Claim 1 For any subgraph H of G, Ly = Lg.

Proof: For all x,
xX"Lgx = Y (x(i) — (4))
(4,9)€H
< Y (@) —2(3)?
(i,5)EE
= x' Lgx.
Thus, x¥(Lg — Ly)x > 0. From this, we infer that Ly < Lg. O

Claim 2 L}LG has the same spectrum as L¥2LgL¥2, where L¥2 =5 T

1
iNA0 o i
and \;,X; are corresponding eigenvalues and eigenvectors of L.

Proof: Consider an eigenvector x of LTTLG of eigenvalue A such that (x,e) =
0. Then since LTTLGx = AX, on setting x = LTT/2y, we get L}LgLTTﬁy =)\LTT/2y.
Premultiplying both sides by LIG/2 = D a0 Vixix;T, we obtain LTT/2LgLTT/2y =)y,
implying that A is an eigenvalue of L¥ ZLgLTT/ % as well. O

Using these results, we can prove a bound on the smallest positive eigenvalue of
LiLe.

Lemma 3 z
Xo(LYLe) > 1.

Proof:

Xo(LELa) = Mo LY Lo LI

where the final step used the fact that Ly < Lg. O
So we have bounded the denominator of the condition number of L} Lg, and we
now turn to upper-bounding the numerator.

15-4

3 Connection to Low Stretch Spanning Trees

Suppose that G is a weighted graph, with weights —) > 0, for each edge (7,j) € E.

The above proof for bounding)\Q(L L¢) can be used to prove the same even for the
weighted case. From the last lecture, recall that for a spanning tree T of GG, and an
edge e = (k,l) € E, the stretch of e is defined as

2 w(i, j)

(4,7) on k-l path in T

w(k,)

str(e) =

and that the total stretch of the graph is

str(G) =Y str(e)

eck
Lemma 4 ([Z]) tr(L} Lg) = str(G).

Proof:

(4,5) in
k-l path in T'

= StT(G),

where (a) used the cyclic property of the trace; that is, the trace is invariant under
cyclic permutations, and thus tr(ABC) = tr(BCA) = tr(CAB) (This is equivalent
to the fact that tr (AB) = tr (BA)), and reg(k, 1) is the effective resistance in the tree
T for sending one unit of current from £ to [, with conductances 1 O

From this lemma, we can arrive at the required bound on the largest eigenvalue,
M(LELg) < stp(G). Thus, from the previous two lemmas, we can see that the
condition number of L! L is at most str(G), and thus the linear system LTTLGp =
LIb can be e-approximately solved for p in O(y/st7(G) In 1) iterations.

15-5

But now each iteration consists of multiplying by the matrix LTTLG, and initially,
we need to compute L;b as well. Thus we can see that we need to be able to compute
the product of a vector with L} in an efficient way. Suppose that we have to compute
Z = L;y, equivalently, solve Lyz =y, then it turns out that since 7" is not just any
subgraph but rather a spanning tree, this computation can be done in time O(n).

To see this, we write down the equations in the system L;z = y:

di)=)~ Y w)=yl) VieV
j{ijteT

Suppose that i is a leaf in 7', with an incident edge (7, j). Then the relevant equation
for this node is z(i) — 2(j) = y(4), i.e, 2(i) = 2(j) + y(i). Note that since i is a leaf,
the only equation in which the variable z(i) appears is this one and the equation for
2(7). Thus we can substitute for z(7) with z(j) + y(7) and recurse on the smaller tree
excluding the vertex ¢. This recursion will continue until we end up with a single edge
(k,1). In this case, we set z(k) = 0, and back substitute to find the values of z for all
the other vertices. It can be seen that this process takes O(n) time, as in each step
of the recursion, we do constant work and there are n — 1 recursive steps.

Thus we can compute the matrix product with Li_'pLG in time O(m), and recalling
that for a graph G, we can find a low stretch spanning tree of stretch sty(G) =
O(mlognloglogn) in time O(mlognloglogn), we can see that given the system
Lgp=Db,in O (m log nloglogn + m+/str(G)In %) =0 (m% In %) time, we can find
an e-approximate solution.

Remember that in finding an upper bound for the largest eigenvector of LTTLC;,

we bounded it by its trace. [2] improved upon this running time bound by using the
following result.

Theorem 5 ([3]; as stated in [2]) For matrices A, B > 0 with the same nullspace,
let all but q eigenvalues of BYA lie in the interval [I,u], with the remaining eigenvalues
larger than u. Then for a vector b in the rangespace of A, using the preconditioned
conjugate gradient algorithm, an e-approwimate solution such that ||x — A™b||x <

€| A™b|| 4 can be found in q+ [§1n 2, /%] iterations, where ||x| 4 = vVxT Ax.

We can use this theorem and since we have a bound on the trace, we can bound
the number of large eigenvalues: Set | = 1, u = (sty(G))3, then we can have at
most ¢ = u = (stp(G))3 eigenvalues of value more than u. Now VT = ¢, and thus
we get that the number of iteration required to solve the system approximately is

0 ((stT(G»% 1n§) -0 (m% 1ng).

References

[1] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript, UTUC

15-6

1990. A talk based on the manuscript was presented at the IMA Workshop on
Graph Theory and Sparse Matrix Computation, October 1991, Minneapolis, MN.

[2] Daniel A. Spielman and Jaeoh Woo. A Note on Preconditioning by Low-Stretch
Spanning Trees. ArXiv 2009 http://arxiv.org/abs/0903.2816

[3] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the precondi-
tioned conjugate gradient method. Numerische Mathematik, 48(5):499-523, 1986.

15-7

http://arxiv.org/abs/0903.2816

	Iterative Methods
	Preconditioning
	Connection to Low Stretch Spanning Trees

