
ORIE 6334 Bridging Continuous and Discrete Optimization Oct 30, 2019

Lecture 14
Lecturer: David P. Williamson Scribe: Rohan Sarkar

In this lecture, we show how to construct low-stretch trees. This is a bit out of
order because we have not yet said why having low-stretch trees is useful for anything
having to do with spectral graph theory. The next few lectures will be build on each
other, so it is useful for us to explain how to construct such trees in this lecture, and
all we have to remember is that we can do it.

1 Low-Stretch Trees

Definition 1 Let G = (V,E) be an undirected graph with weights w(i, j) ≥ 0.
For a spanning tree T of G, the stretch of an edge (k, l) is

stT (k, l) =
dT (k, l)

w(k, l)

where dT (k, l) = sum of weights on k-l path in T .

The total stretch of T is

stT (G) =
∑
e∈E

stT (e)

The average stretch of T is

1

|E|
stT (G)

Alon, Karp, Peleg, and West (1995) introduced the idea of low-stretch trees, and
showed how to find a tree T with average stretch ≤ exp(O(

√
log n log log n)). Today

we will look at a simplified version of their result for unweighted graphs.

2 Algorithm for Unweighted Graphs

Idea: We will partition G into low-diameter clusters, so that there are not too many
edges between the clusters. Then, we construct trees in these clusters, contract the
clusters to vertices and recurse.

0This lecture is derived from a lecture of Nick Harvey at the Sixth Cargèse Workshop on Com-
binatorial Optimization: http://www.cs.ubc.ca/~nickhar/Cargese1.pdf.

14-1

http://www.cs.ubc.ca/~nickhar/Cargese1.pdf

To deal with the recursion, it will be useful to consider multigraphs. Let c(e)
denote the multiplicity of edge e in the multigraph. For a subset of edges F ⊂ E, we
define c(F) =

∑
e∈F c(e). In the next section, we will describe a clustering algorithm

that proves the following Lemma. The algorithm uses a standard technique called
region-growing.

Lemma 1 Let C = c(E) and D(C) be some parameter. Then there is a partition of
G into clusters s.t.

• every cluster has diameter ≤ D(C) and

• there are at most α(C)|E| intercluster edges where α(C) ≤ 4 ln(C)

D(C)

where e is an internal edge if both endpoints are inside the same cluster and is an
intercluster edge otherwise.

We will prove that our clustering algorithm satisfies this lemma but for now,
assume that the lemma is true. Then the algorithm formalizing our idea is as follows:

Algorithm 1: LowStretchTree

Find partition of G into clusters U1, U2, · · · , each with diameter ≤ D(C)
foreach cluster Ui do

Construct a shortest path tree Ti in Ui
Construct G′ by contracting each Ui into a vertex ui
T ′ ← LowStretchTree(G′)
return T ′

⋃
i Ti

Theorem 2 (Alon et al. ’95) Pick any ε > 0. Then the above algorithm returns a
tree of average stretch nO(ε).

Proof: Let T̂ be the tree returned by the algorithm. Pick a random edge (i, j) ∈ E
and let P be the i-j path T̂ . Let U1, U2, · · · be the clusters found in the clustering
algorithm and let T ′ be the result of the recursive call.

If (i, j) is an internal edge in cluster Uk, then dT̂ (i, j) ≤ 2D(C), since the diameter
of Uk is at most D(C).

If (i, j) is an edge between clusters Uk and Ul, let P ′ be the path in T ′ between Uk
and Ul. Since (i, j) was chosen at random, its expected stretch is at most the average
stretch of T ′. Therefore,

expected # edges on path P ≤ (expected # edges in P ′)

+ (expected # vertices in P ′)(max
i

diam(Ti))

≤ (avg stretch of T ′) + (avg stretch of T ′ + 1)(2D(C))

≤ (avg stretch of T ′) · 5D(C)

14-2

Let c′(e) be multiplicity of resulting edge e in G′ and c′(E) = C ′, and let S(C) = worst
case average stretch over all graphs G s.t. c(E) = C. By Lemma 3, the maximum

number of intercluster edges is α(C)|E| where α(C) =
4 ln(C)

D(C)
, which implies that

C ′ ≤ α(C) · C. Then,

S(C) ≤ 2D(C)︸ ︷︷ ︸
stretch of internal edges

+ α(C)︸ ︷︷ ︸
fraction of intercluster edges

· S(α(C)C) · 5D(C)︸ ︷︷ ︸
stretch of intercluster edge

≤ 2D(C) + 20 ln(C)S
(
α(C)C

)
If we set D(C) = 4 ln(C)C3/2 ≤ Cε, then α(C) = C−ε/2. This makes S(C) ≤
2Cε + 20 ln(C)S(C1−ε/2). If we guess that S(C) ≤ 3Cε, then we check the recursive
equation and see that

S(C) ≤ 2Cε + 20 ln(C) · 3Cε−ε2/2 ≤ 3Cε.

Observing that C ≤ n2 initially gives S(C) ≤ 3n2ε, and we have proved the theorem.
2

3 Clustering Algorithm

We return to Lemma . First, we will define some notation:
B(i, r) = {j ∈ V : d(i, j) ≤ r}
E(i, r) = E(B(i, r))
δ(i, r) = δ(B(i, r))

where d(i, j) is the length of the shortest i-j path in G.

Algorithm 2: Cluster

if α ≥ 1 then
return each vertex in its own cluster

l← 1
while G nonempty do

Pick i in G
Let r∗ be smallest r s.t. c(E(i, r + 1)) ≤ (1 + α)c(E(i, r))
Vl ← B(i, r∗)
l← l + 1
Remove Ul and all incident edges from G

return V1, · · · , Vk

Proof of Lemma 3:
We will prove both claims.

14-3

First, we must show that there are at most α(C)|E| intercluster edges. For each
cluster Ul,

c(δ(Ul)) = c(δ(i, r∗))

≤ c

(
E(i, r∗ + 1)− E(i, r∗)

)
= c(E(i, r∗ + 1))− c(E(i, r∗))

≤ αc(E(i, r∗)),

by construction. So we can charge edges in δ(Ul) against edges in E(i, r∗). The charge
is unique since E(i, r∗) is removed from the graph in the next step. Therefore, we
have at most α(C)|E| intercluster edges.

Second, we claim that r∗ ≤ D(C)

2
. Suppose not. Then,

c(E(i, r + 1)) > (1 + α)c(E(i, r)) for r = 1, · · · , D(C)

2

Therefore

c(E(i, r∗)) ≥ c(E(i, 1))(1 + α)D(C)/2

> 1

(
eα/2

)D(C)/2

= e
αD(C)

4 using 1 + x > ex/2 for 0 < x < 1

= elnC

= C

This is a contradiction, since there are more edges in c(E(i, r∗)) than there are in the
entire graph. 2

4 Final Remarks

For the overall running time, we notice that the clustering algorithm runs in O(m)
time, since it essentially does a breadth-first search. We observe that log(C) de-
creases by a factor of 1 − ε

2
at each recursive call, so that we make O(1

ε
log logC) =

O(1
ε

log log n) total recursive calls. This means the entire algorithm takesO(1
ε
m log log n)

time.
The best known result finds a tree ofO(m log n log log n) total stretch inO(m log n log log n)

time (Abraham and Neiman STOC 2012).
An open question is whether it is possible to find a tree of total stretch O(m log n)

in Õ(m) time. Alon et al. show that every tree has total stretch Ω(m log n) in grid
graphs and in graphs with O(n) edges and girth Ω(log n), so it is not possible to find
a tree of total stretch o(m log n) in every graph.

14-4

	Low-Stretch Trees
	Algorithm for Unweighted Graphs
	Clustering Algorithm
	Final Remarks

