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Lecture 12
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In this lecture, we will introduce planar graphs, and investigate the connections between
this property and the spectrum of matrices associated with the graph.

1 Introduction to Planar Graphs

We will begin with an informal definition (a standard graph theory textbook will have a
more rigorous definition).

Definition 1 (Planar) A graph G = (V,E) is planar if

• for each vertex i ∈ V there exists a point xi ∈ R2

• for each edge (i, j) ∈ E there exists a curve between xi and xj that intersects no other
curve

Conceptually, observe that if a graph is planar it means that it can be drawn in the
plane without any edges intersecting. We call this collection of points and curves a planar
embedding of G. The term plane graph refers to the graph G and a planar embedding. The
plane graph divides the R2 plane into regions called the faces of the graph. This includes
the external face, which is the face formed by the outermost curves.

A planar graph G is maximal if adding any edge e to G makes G+e non-planar. For any
maximal planar graph, every face in a planar embedding must be a triangle, since otherwise
we could add an edge. A graph H is a minor of G if we can obtain H from G by some
sequence of deleting and/or contracting edges.

Recall that K5 is the complete graph with five vertices and K3,3 is the complete bipartite
graph with 3 vertices on each side. Additionally, recall that 3-vertex-connected means that
up to any two vertices can be removed from a graph and it is still connected. We will now
state a couple of theorems about planar graphs without proof.

Theorem 1 (Kuratowski 1930, Wagner 1937) A graph is planar if and only if it does
not have K5 or K3,3 as a minor.

Theorem 2 Any maximal planar graph is 3-vertex-connected.

2 Generalized Laplacian Matrix

We now switch gears and introduce a generalization of the Laplacian matrix concept that
we have previously used. The formal definition, given below, is very similar to the original
definition; however, there is no condition on the diagonal elements of the matrix.

0This lecture is derived from Godsil and Royle, Sections 1.8, 13.9-13.11; and Van der Holst 1995 (http:
//oai.cwi.nl/oai/asset/2232/2232A.pdf).
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Definition 2 (Generalized Laplacian) A generalized Laplacian of graph G is a sym-
metric matrix M = (mij) ∈ Rn×n such that

mij < 0 if (i, j) ∈ E,
mij = 0 if (i, j) 6∈ E and i 6= j.

By following proofs from earlier in the course (for Laplacian matrices), we can assume that
if G is connected then the eigenvalues λi are such that λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn and the
eigenvectors xi are such that x1 > 0.

Since the generalized Laplacian has no condition on the diagonal, then M − λI is a
generalized Laplacian if M is. Thus, we can apply a linear shift to all of the eigenvalues of
a generalized Laplacian matrix and still have a generalized Laplacian. So, we will assume
that λ1 is the unique negative eigenvalue and that λ2 = 0. We now introduce the concepts
of kernel and co-rank.

Definition 3 (Kernel & Co-Rank) The kernel of M is

ker(M) = {x ∈ Rn : Mx = 0}.

The co-rank of M is dim(ker(M)).

For G connected and generalized Laplacian M such that λ2(M) = 0, the co-rank is the
multiplicity of 0 as an eigenvalue.

Definition 4 (Colin de Verière invariant) The Colin de Verdière invariant µ(G) is the
largest corank of a generalized Laplacian such that:

1. M has exactly 1 negative eigenvalue;

2. There is no X = (xij) ∈ Rn×n such that X 6= 0, MX = 0, xii = 0 for all i ∈ V , and
xij = 0 if mij 6= 0. [Strong Arnold Property]

3 Planarity via Generalized Laplacians

We will now begin to connect planar graphs with generalized Laplacians.

Theorem 3 (Colin de Verdière 1990) The following hold:

• µ(G) ≤ 1 iff G is a collection of paths.

• µ(G) ≤ 2 iff G is outerplanar (planar and all vertices are on the external face).

• µ(G) ≤ 3 iff G is planar.

The challenging direction of the final relationship is to show if G is not planar then
µ(G) > 3. The proof makes use of the fact that µ(K3,3) = µ(K5) = 4 and the following
theorem.
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Theorem 4 (Colin de Verdière 1990) If H is a minor of G then µ(H) ≤ µ(G).

The easier direction of the proof is if G is planar then µ(G) ≤ 3. We will now prove this
direction via a proof given by Van der Holst in 1995.

Let the support of x be denoted by supp(x) = {i ∈ V : x(i) 6= 0}, supp+(x) = {i ∈ V :
x(i) > 0}, and supp−(x) = {i ∈ V : x(i) < 0}. We start by stating and proving a series of
lemmas.

Lemma 5 Suppose x ∈ ker(M) where M is a generalized Laplacian matrix. If i 6∈ supp(x),
then either all of the neighbors of i are not in supp(x) or i has neighbors in both supp+(x)
and supp−(x).

Proof: If Mx = 0 then (Mx)(i) = 0 for each i. Then,

0 = (Mx)(i) =
∑

j:(i,j)∈E

mijx(j) +miix(i) =
∑

j:(i,j)∈E

mijx(j)

since i 6∈ supp(x). Since mij < 0 for all j such that (i, j) ∈ E, either all x(j) = 0 or some
are positive and others are negative. 2

Lemma 6 For x ∈ ker(M), where M is a generalized Laplacian, x 6= 0, G connected, then
supp+(x) 6= ∅ and supp−(x) 6= ∅.

Proof: If x ∈ ker(M), then it is in the span of the eigenvectors that have eigenvalue 0.
These eigenvectors are orthogonal to the one eigenvector x1 of negative eigenvalue, and we
can assume that x1 > 0 (as discussed in Section 2). Thus xTx1 = 0, and since x 6= 0 and
x1 > 0, x has both positive and negative entries. 2

For the next lemma, we need to define another term.

Definition 5 (Minimal Support) A vector x is said to have minimal support if x 6= 0
and for every y 6= 0 and y ∈ ker(M) with supp(y) ⊆ supp(x) implies that supp(x) =
supp(y).

Additionally, let’s introduce some notation. Let M [I, J ] be the submatrix with rows
from the index set I and columns from index set J .

Lemma 7 Let G be a connected graph, M be a generalized Laplacian with only one negative
eigenvalue. Let x ∈ ker(M) have minimal support. Then the graph induced by supp+(x)
(or by supp−(x)) is connected.

Proof: We will give a proof by contradiction. Suppose that the graph induced by the
positive support of x is not connected. Let I and J be a partition of supp+(x) such that
I and J are not connected. We will now show that we can find y ∈ ker(M) and y 6= 0 but
supp(y) ⊂ supp(x).
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Figure 1: Visualization of the Mx = 0 equation.

Let K = supp−(x). Since Mx = 0 and M [I, J ] = M [J, I] = 0 (because I and J are not
connected), and x is zero on the indices outside I, J,K, we have

M [I, I]x[I] +M [I,K]x[K] = 0 (1)

M [J, J ]x[J ] +M [J,K]x[K] = 0 (2)

Let x1 be the eigenvector corresponding to the single negative eigenvalue. We know that
x1 > 0. Now, define α as

α =
x1[I]Tx[I]

x1[J ]Tx[J ]

and note that α > 0 because all the terms in it are positive. Now, define y such that

y =


x(i) ∀i ∈ I
−αx(i) ∀i ∈ J
0 else

We claim that supp(y) ⊂ supp(x); this follows because we know that K = supp−(x) 6= ∅.
Further note that

xT1 y = x1[I]Tx[I]− αx1[J ]Tx[J ] = 0,

so that y is orthogonal to x1. We also have that

yTMy = y[I]TM [I, I]y[I] + y[J ]TM [J, J ]y[J ]

= x[I]TM [I, I]x[I] + α2x[J ]TM [J, J ]x[J ]

= −x[I]TM [I,K]x[K]− α2x[J ]TM [J,K]x[K] ≤ 0,

where the last equality uses (1) and (2), and the final inequality follows because x[I], x[J ] >
0, x[K] < 0, M [I,K],M [J,K] ≤ 0 and α > 0.

So we have that xT1 y = 0 and yTMy ≤ 0. Because y is orthogonal to x1 (the one
eigenvector of negative eigenvalue), it must also be the case that yTMy ≥ 0. Thus My = 0,
which means that y ∈ ker(M), implying that x does not have minimal support. This is the
desired contradiction. 2

We can now prove the following.
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Theorem 8 If G is planar and 3-vertex-connected, then µ(G) ≤ 3.

Proof: We will prove this by contradiction. Let’s suppose G is planar but µ(G) > 3.
We show that we can find a K3,3 minor in G.

Choose some plane embedding of G and choose a face. Let u, v, w be on the face.
Because dim(ker(M)) ≥ 4, there exists x ∈ ker(M) such that u, v, w 6∈ supp(x). Assume
that x has minimal support.

Now let’s add another point s into the face, and add edges from s to u, v, w. Pick
p ∈ supp(x). Since G is 3-vertex-connected, there exist vertex disjoint paths from p to
u, v, w. Let a, b, c be the first vertices on these paths such that they are not in the support
of x and all subsequent vertices are not in the support of x (see Figure 2). We know that
a, b, c 6∈ supp(x) have neighbors in the support of x, and thus by Lemma 5 we know that
they must have neighbors both in supp+(x) and supp−(x) (see Figure 3).

p

b

supp+(x) supp−(x)

a
c

u

v w

s

Figure 2: Vertex disjoint paths from p to u, v, w on a single face, with s added to the face.
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Figure 3: a, b, c must have neighbors in both supp+(x) and supp−(x).

Now, let’s contract supp+(x) and supp−(x) to single vertices s+ and s−, respectively
(see Figure 4); we can do this since supp+(x) and supp−(x) are each connected. Now, let’s
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also then contract the a − u, b − v, and c − w paths. This leaves us with {s, s+, s−} and
{a, b, c} forming the K3,3 complete graph, and so we have completed the proof. 2

b a
c

u

v w

s

s+ s−

Figure 4: Contracting supp+(x) and supp−(x) to s+ and s− respectively.

With a little twist via the closing corollary, we can complete the proof of that direction
of any G.

Corollary 9 Since µ(G) only increases when adding edges, any maximal planar graph is
3-vertex-connected. Thus, we can make any G maximally planar, so µ(G) ≤ 3 for any
planar G.
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