ORIE 6334 Bridging Continuous and Discrete Optimization Oct 7, 2019

Lecture 10
Lecturer: David P. Williamson Scribe: Ligun Ding

In this lecture, we continue the proof of Cheeger’s inequality and explore simi-
lar bounds on the largest eigenvalue of the normalized Laplacian. Recall that the

normalized Laplacian is given by . = D~Y2LsD~Y/2, where
1 0 .. 0
d(1)
0 1
D2 — d(2)
0 0 .. 1

\/d(n)

and d(7) is the degree of vertex i. When S C V, we define 0(5) as the set of edges
with exactly one endpoint in S, and vol(S) = ..o d(i). The conductance of S is
defined as 5(5)
¢(5) = — :

min(vol(S), vol(V — 9))

and the conductance of G is defined as ¢(G) = mingcy ¢(5). Let Ay < X <--- <\,
denote the eigenvalues of .Z.
Denote x5 to be the eigenvector associated with Ay. Its Raleigh quotient R(z5) =

-
xy L2
x;:pg

max(0, x9(7)) for each i. The support of y, supp(y) := {i | y(i) > 0}, has cardi-
nality less than or equal to 7, by assuming (without loss of generality) z, satisfying
|supp™ (z2)] < |[supp~ (z2)]. The support of y, supp(y), is also nonempty, as x5 has to
be perpendicular to Dze where e is the all one vector.

is simply Ay. Recall from last time we define y = (z3); meaning y(i) =

1 Cheeger’s Inequality
Let us now restate the upper bound of Cheeger’s inequality.
Theorem 1 (Cheeger’s inequality, upper bound) We have ¢(G) < /2.

Recall we are only dealing with d-regular graph in the proof. We have shown last
time that R(y) < R(xz2) = Ay (Claim 3 in Lecture 9) and it is then enough for us to

find an S C supp(y) such that % < /2R(y). We state this as a lemma below.

OThis lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cse.cuhk.edu.hk/~chi/
cscb160/notes/L02.pdf| and Lau’s 2015 notes, Lecture 4, https://cs.uwaterloo.ca/~lapchi/
cs798/notes/L04.pdf.
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Lemma 2 Given any nonzero y € R™, if the graph is d-regqular, then there exists an
S C supp(y) such that
5(S)] _

49| 2R(y).

Proof:  To start, we may assume without loss of generality that y(i) € [—1,1] for
each i as we can divide y by the largest entry (in magnitude) of it without affecting
the Raleigh quotient R(y) and the support of y.

We shall construct the S randomly. Let S(t) := {i | |y(¢)|* > ¢}, where ¢ is picked
uniformly random from [0, 1]. Now the expectation of |0(S(t))] is

E(6(S@)) = Y P{ieSE),jeV-SHufieV -5, je S}

(i,J)EE
(a) . . . .
= > P(y@)P <t < y(i)Porly()I> <t < Jy(0))
(ig)EE
= D G = ly@)P
(i,J)EE
= > () —yD)lly@) + y()l
(i,5)€E (1)
(v)
<. /2 W > W
(1,j)EE (i,j)eE
()
< /> W 2> Wy i)?)
(3,7)EE (i,J)EE

QdZ y(i)?

(4,5)EE

The equality (@) is due to the distribution of ¢. The inequality (b) uses Cauchy-
Schwarz. The inequality (c) uses the fact that (a +b)?* < 2a® +2b*. The last equality
(d) is due to that the graph is d-regular.

The expectation of |S(t)] is

EIS(0)] = DB e V)= D By = 0) = Yyl

=1

Recall that the Raleigh quotient of y is

'Ly oy Lay  Dapes(d) —y(i))?
yly dyTy dy i y(i)? '
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Combining pieces, we find that

E[lo(S(#)] — v2R(y)|S(1)]d] < 0.

By considering the assumption y is not zero, there must be some ¢y such that |S(tg)| #

0 and
16(S(t0))| — V2R(y)[S(to)|d < 0.

Rearranging the terms yields the desired inequality. Note that we can find the desired
t simply by trying all ¢ = y(i)? for all 1 € V. O
With this lemma, and consider the y constructed from z; with supp(y) < 7, we
see the Cheeger’s inequality for the upper bound is proved.
Last time, we mentioned spectral partitioning (Algorithm 1 in Lecture 9): Sort
entries of x5 and relabel them and the corresponding vertices so that xo(1) > x9(2) >
- > x9(n), take the sweep cuts for ¢ = 1,...,n — 1, S; = {1,...,¢}. Find
min;—;,_, ¢(S;). The construction of the set S(tg) for y = (x2)+ in Lemma [2| shows

.....

that there is some g, to such that S(tg) =V — 5;, and

min §(S;) < B(Si,) = #(S(t)) < V2R(y) < V2R(z2) = V2.

>
d

le(n)xg(n}—l) x2k3) x?(Q) xo(1)

2 Bounds on largest eigenvalue

We now turn to analyzing the largest eigenvalues A, of the normalized Laplacian.
Note that

x' Lx ' D V2LoD 2y y' Loy
A, = max = max = = max — ,
zeR" x'w TER™ r'w yeRm y' Dy

where we take y = D~'/2z. Recall from last time, we have shown \, < 2. We also
claim the following

Claim 3 A\, =2 if and only if G has a bipartite component.

We can easily show the if direction. If G has a bipartite component S with sides L, R,
define a vector y € R" as y(i) = 1ifi € L, y(i) = —1if i € R and y(i) = 0 otherwise.

If 0(A, B) denotes the set of edges with one endpoint in A and another in B, we
have

y' Loy > iper(yli) — y(4))? ~40(L,R)  2vol(S)
yTDy Y oiev A(@)y(i)? N vol(.S) N vol(S)
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Now we’ll show a statement stronger than the converse: G has a bipartite com-
ponent when A, = 2, and has an “almost” bipartite component when A, is close to
2. To make this more precise, consider the following quantity

_ e 2B 2|E(R)| + [5(S)]
p@) = sV vol(SS) ’
inr0

for any S C V, where E(X) denotes the set of edges with both endpoints in X. Note
that
2|E(L)| +2|E(R)| +[6(5)| _ vol(S) —2[4(L, R)|
vol(.S) B vol(.S)

Alternatively,
g i)+ y(j
vel=10.m 3 Ziey d(i)|y(i)]
by taking L ={i:y(i) =1}, R={i:y(i) = —1} and S = LUR.
Since A, is the largest eigenvalue of .Z, 5, = 2 — A\, is the smallest eigenvalue of
2 - £ =21 — (I — /) =1+ o/. Hence

o (I + )z . 2" DV?(D+ &\D V2 .y (D+ Ay
fp = min —————— = min = = min ————";
zER™ x'x zeRn x'x yeRr  y' Dy

that is,
PR > CURRTE))
" yern Ziev d(i)y(i)?

Trevisan proves the following very nice analogy to the Cheeger inequality.

Theorem 4 (Trevisan 2009)

56 < B(G) < V2.,

Note when A, = 2, then 3, = 2 — )\, is zero and hence 3(G) = 0 by the theorem.
This means there is some S, L, R C V such that LN R =0,S = LU R, and vol(S) =
26(L, R). This equality simply means S is a bipartite component.

Proof: For the first inequality, simply note that

8. = min Z(i,j)eE(y<i> +y ]))2 < min Z(i,j)eE(y<i> + y(]))2
" yern Y ey A(3)y(i)? T ye{-1,01}" > iev d(z').y(i)2 |
min 2ges 21y +y()l 28(),

Toye(-ror Yoo d(i)y(i)?
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—1,0,+1}.

by noticing that (y(i) +y(5))* < 2[y(i) + y(j)| for y(i), y(j) € A

For the second inequality, pick y € R" satistying 3, = T(DT

+r—"ﬂ

and assume that

<

y
max; y*(¢) = 1 (if this is not true, scale y accordingly). Choos
at random, and set x(i) = 1 if 2(i) > V1, x(i) = —1 if z(i)
otherwise. Next time we will show that

Z|x + z(j |—\/H2d )|z(4)

(i,5)EE eV

@

€ [0, 1] uniformly

\/f and z(i) = 0

| /\

Then if we set Ly = {i € V : z(i) = —1}, and R, = {i € V : z(i) = 1}, and
Sy = L; U Ry, we get that

E[2[E(L:)| + 2| E(Ry)| + [0(Se)| — v/2Bn vol(Sy)] <0,
implying that there exists a t such that

2|E(Ly)| + 2| E(Ry)| + 6(S1)]
vol(Sy) = \/%’

or
B(G) < V2B,

Again, we can find ¢ efficiently by trying all n values where ¢t = y(i)?. Next time we
will prove the inequality and use it to get an approximation algorithm for the MAX
CUT problem. O
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