ORIE 6334 Bridging Continuous and Discrete Optimization September 4, 2019

Lecture 1

Lecturer: David P. Williamson Scribe: Mateo Diaz

The general theme of this class will be to link ideas that at first sight seem completely
unrelated. Today we begin with a classical example involving graphs and eigenvalues.

1 Eigenvectors, Eigenvalues, and Graph Theory

Let us recall a couple of definitions. Consider a symmetric matrix A € R™*". We say that
x € R" is an eigenvector and A is an eigenvalue if Ax = Az. Eigenvectors and eigenvalues
have applications in differential equations, machanics, frequency analysis, and many others.

An undirected graph G is represented as a tuple (V, E) consisting of a set of vertices V'
and a set of edges .. We are interested in paths, flows, cuts, colorings, cliques, spanning
trees, among others.

During part of this semester, we will ask what graphs and eigenvalues have to do with
each other.

2 An Introductory Example

The diameter D of a graph is minimum length you would have to be able to travel to
guarantee that you could go from any node in the graph to any other node. Formally,

D= ma}‘; “length of shortest path between ¢ and j”.
1,]€
A graph is said to be d-regular if all nodes are of degree d, where degree is defined as
the number of edges incident on each vertex. The below graph has diameter 2 but is not
d-regular since some nodes are of degree 2 and some are of degree 3.

For our introductory examplﬂ we will consider d-regular graphs of diameter 2 with as
many nodes as possible. By starting at any node ¢, the graph could look like

!This material is taken from the article A.J. Hoffman, R.R. Singleton, “On Moore Graphs with Diameters
2 and 3,” IBM Journal, pp. 497-504, November 1960.
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d—1

In this graph, note that there are no connections between adjacent nodes in the first
layer since we want to maximize the number of nodes in the graph. In fact, there cannot
be triangles nor squares in this type of graph. Also, the connections between the leaf
nodes are omitted from the diagram. Based on the diagram, such a graph would have
n=1+d+d(d—1)=d?+ 1 nodes.

Let A = (ai;) be the adjacency matrix of G, defined as

1 if (4i,§) € E
aii =
" 0 otherwise.

If B = A2, then

bij = Z a;kar; = number of walks of 2 steps in graph G from ¢ to j.
k

Since the graph is d-regular, we have that b; = d. This follows because starting at node
1 we can reach d vertices in one step and then immediately return. Additionally, it is not
hard to see that starting at ¢ we reach every other vertex in GG in exactly 0 steps, exactly 1
step, or exactly 2 steps (exclusive or). Thus, the following holds

T+ A+ A2 —dl=J,

where [ is the identity matrix and J is the matrix of all ones.
We’ll need the following facts from linear algebra.

Fact 1 For A € R™" symmetric, the following are true:
o All of the eigenvalues of A are real.

e There exist eigenvalues A1,..., A\, (called the spectrum) and eigenvectors xi, ...,y
such that (z;,x;) = alx; =0 fori# j.

e The trace tr(A) = Z?:l Qi = Z?:l Ai-
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Existence. We’ve discussed the notion of a d-regular graph with diameter two, but does
such a graph exist? To answer this question we will use linear algebra.

Let us start by noticing that Ae = de, where e = (1,...,1)” is the vector of all-ones
(which follows since the graph is d-regular). Thus, e is an eigenvector of A and d is the
eigenvalue. Observe that

A?e = A(Ae) = A(de) = d(Ae) = d?e.
Thus,

(I+A+ A% —dl)e=Je
e+ de + d*e — de = ne
So n = d? + 1, though we already knew that.
Now let v be any other eigenvector of A orthogonal to e. Then v’e = 0, and thus

Jv = 0. We have that Av = \v for some eigenvalue \. Also, A%v = A(Av) = A(\v) = \2v.
Thus

(I+A+A?—dl)v=Jv
VFEAMNF N0 —du=0

= 1+A+X-d=0
So for all eigenvalues not corresponding to e, we have \ = —1Ev4d=3 V24d_3.
Given what we now know about the eigenvalues, what can we tell? We can invoke the
trace! Notice that tr(A) = 0: a; = 0 for all ¢ since there are no self-loops in the graph.
Now we consider two possible cases.

Case 1. If v/4d — 3 is irrational, then in order for the trace to sum to zero, the

eigenvalues 71+V24d73 and == V24d73 must each have multiplicity ”T_l Plugging this
in gives
-1/-1++V4d—-3 —-1—-+4d—-3
tr(A) =0=d+ " * +
2 2 2
n—1
= d —
2
d2
—d— —
2

= d=0ord=2.
So the only possible graphs would be:

(a) Assume d = 0, then the graph is a single node, which does not have diameter
two.

(b) Assume d = 2, in this case n = 5. This gives the 5 cycle; the 5-cycle is a 2-regular
graph of diameter two.
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Case 2. If \/4d — 3 is rational, then let s> = 4d — 3. Let m be the multiplicity of the
eigenvalue % Then

tr<A>=d+m(‘12+s> - 1-m) (—12—s>
=0

Using the fact that d = +(s?+3), we get n— 1 = d?> = & (s*+6s2+9). So continuing

0= 3(82 +3) +m <_12+S> - <116( 44 65%+9) —m) (‘12_ 5)

After simplifying the algebra, we find that

—s° — st =653+ 252+ (32m — 9)s +15=0.

By the rational root theorem, we know that any solution to this polynomial must be
a factor of 15. Thus, we can enumerate all possible roots.

Hence we have the following possibilities:

(a) Assume s=1,d=1,n=2:
A l-regular graph on 2 nodes is a single edge, but its diameter is not 2.

(b) Assume s =3,d =3,n = 10:
We can represent this graph in two ways:
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This first representation shows what the graph would look like using the same
type of diagram we used earlier.

This second representation is often called the Petersen representation, and the
graph is called the Petersen graph. Petersen found it in the course of trying to
find the smallest cubic (that is, 3-regular) bridgeless graph that could not be
3-edge-colored. A bridgeless graph is one such that the graph is still connected
after removing any edge. A 3-edge-colorable graph is one in which we can color
every edge with one of three colors such that at each vertex, all incident edges
have different colors. The Petersen graph is also the smallest cubic bridgeless
graph that does not have a Hamiltonian cycle. Knuth has called the Petersen
graph:
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“A remarkable configuration that serves as a counterexample to many
optimistic predictions about what might be true for graphs in general.”

(c) Assume s =5,d =7,n = 50:
This graph is known to exist and is called the Hoffman-Singleton graph (Hoffman,

Singleton 1960).
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(Image source: Wikipedia)

(d) Assume s = 15,d = 57,n = 3250:
Does this graph exist? We don’t know. This is a good research question!

This example is to give you a small taste of how eigenvectors can be useful in graph
theory. By looking at the spectrum of d-regular graphs of diameter 2 with as many nodes
as possible, we were able to come up with very strong restrictions on the possible values of

d.
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