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Optimization and inverse problems via variational analysis

A fundamental web of ideas:

>

>
>
>

error bounds and sensitivity to data
robustness to perturbation

angle of transversality

linearly convergent algorithms.

Semi-algebraic geometry and generic regularity

Some algorithms:

>

>

>

alternating projections
nonsmooth quasi-Newton
a prox-linear method.

Foundations of active-set methods.
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Theme

variational analysis — computational inversion

!

optimization, equilibrium,
control, etc. . .via
nonsmooth geometry

of closed sets X

(maybe nonconvex)

in Euclidean space E.

dy(2)

Key tool: distance dx.
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Computational inversion of y € ®(x)

Problem
Given set-valued mapping ¢ (between Euclidean spaces), find
a solution x with data y € ®(x). Equivalently, x € ®~*(y).
—— N——
easy to compute hard
Examples

» Linear programming: Ax < y. Define ®(x) = Ax + RT.

» (Banach, 1922) If Id — & is a single-valued contraction, the
iteration xx11 = y + xx — P(xx) converges to the solution.

» Set intersection:

Given sets X and Y/, y
findze XNY.

Define ®(z) = (X —z) x (Y — z).
Then solve (0,0) € CD(Z)
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A circle of ideas

Consider the problem
y € ®(x)

locally around (x,y) € graph ¢.

» Regularity — a linear error bound:

de-1(,)(x)  distance to a true solution

do(x)(¥) measured error

is bounded above. (The sup near (x,y) is the modulus.)

Sensitivity of solutions x to data y. (Condition number)

v

v

Robustness of regularity to changes in ®.
(Distance to ill-posedness: Demmel '87, Renegar '94.)

v

v

What happens for generic data y?

Local linear convergence of algorithms: dg(,)(y) < ak.
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Fundamental result

Suppose graph ® closed and X € ®~1(y) C E. Key measures. ..

» Modulus of regularity.
» Radius (Dontchev-L-Rockafellar '03):

inf{HIinear G| : 4+ G not regular at (X, y + G>‘<)}

» Angle between
graph ® and E x {y} %
(the coderivative criterion). :
y
Then the quantity W\/
. 1 / E
radius = ———— = tan(angle),
modulus

controls the linear convergence of a simple algorithm.
True for generic data y?
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Example: set intersection, normals, and transversality
(0,0) € ®(z) = (X—2)x (Y —2).

Regularity is transversality of X and Y at z:

normal cones Nx(Z) and —Ny(Z) intersect
trivially (so, between them, angle > 0).

Alternating projections (von Neumann '33)
then converges at linear rate depending on
angle (Drusvyatskiy-loffe-L '13).

Nx(x) at x € X consists of Ny (x)
lim A (z, — x,),

where A\, > 0, z; — x, and |z, — x| = dx(z).



A bad example

The problem y € ®(x) is strongly regular if
®~1 single-valued and Lipschitz near (¥, X)

(as in the Banach contraction mapping theorem).

But regularity can fail badly even for smooth convex optimization
(and hence so does strong regularity).

There is a C* strictly convex function f: R — R such that
Legendre-Fenchel conjugation

F(y) = max {yx — f(x)},

or equivalently, solving y = f’(x), is not regular for any y.

(f')~1 is the Lebesgue singular function, so nowhere Lipschitz.
But what if f is more “concrete”, or “tame” (Grothendieck)?
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Semi-algebraic sets

Polynomial level sets in R™:
{x:p(x) <0} and {x:p(x)<0}.

Basic sets are finite intersections of these.
Finite unions of basic sets are called semi-algebraic.

Semi-algebraicity is prevalent and easy to recognize,
since linear projection maps preserve it (Tarski-Seidenberg).

If X, Y C R" are semi-algebraic, then, for almost all z € R”,
the intersection of X — z and Y is everywhere transversal. Proof:

Theorem (loffe '07). .. after Sard.
For almost all data y, the problem y € ®(x) is regular at every
solution x, providing ® has closed semi-algebraic graph.
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Interlude: nonsmooth optimization via quasi-Newton

Generic regularity suggests linear convergence. Eg:
minimize nonsmooth Lipschitz f: R” — R via Clarke criticality. . .

solve 0 € Of(x) = conv{limVf(x.):x — x}.

BFGS Algorithm: iterates xi, approximate inverse Hessians Hy.
> Xyt1 approximately minimizes f on xx — Ry H V1 (xk).
> Hii1 minimizes H — trace Hk_lH — logdet H
subject to H(Vf(xkt1) — VF(xk)) = Xk+1 — Xk.

Popular since 1970 for smooth problems, 0 f- fonin
yet also effective when nonsmooth.
Why?? Example (L-Overton '13)
Minimize an eigenvalue product f 0"

(nonsmooth, nonconvex, semi-algebraic, \
n = 190), ten random initializations. T I{‘és;"ast";c;?]w “
What controls the linear rate?

s
10
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Generic strong regularity
Theorem (Drusvyatskiy-loffe-L '13)  Consider

semi-algebraic ®: E = F with dim(graph ®) < dimF.

Then, for almost all data y, the problem y € ®(x) is
strongly regular at every solution x.

Example Any maximizer X of (y,-) Y \ x
over closed X C E is critical:

y e Nx()_()

Suppose X is semi-algebraic.
Then (Drusvyatskiy-L '13)

dim(graph Nx) < dimE,

so, for almost all y, strong regularity holds for all x. Hence. ..

11/16



Consequences of strong regularity

For semi-algebraic optimization maxx (y, -) with generic data y,
the condition y € Nx(x) is strongly regular at every maximizer x.
Two consequences, with classical flavor. . .

Quadratic growth
(Bonnans-Shapiro '00):
there exists k > 0 so

<y7X> < <.y7)_<> _H|X_)_<’2

for x € X near X.
Second-order condition (Mordukhovich '92)
(z,w) € Ngraph ny (X, y) and w#0 = (z,w) <O0.
But we can say more. . .
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|dentifiability and “active set” philosophy
Many methods for maxx (y, ) (high-dimensional and nonsmooth)
generate asymptotically critical x, € X:

there exist yx € Nx(xx) such that yx — y.

Example. Proximal point: p(xx — xk11) +y € Nx(xkt1).
Suppose X is semi-algebraic and y is generic.
Any maximizer X lies on an identifiable manifold M C X:
every asymptotically critical sequence eventually lies in M.
Hence the problem reduces to

max (y, -).

nax ()

Low-dimensional and smooth.
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“Blind” algorithms reveal identifiable manifolds

Recall: BFGS (L-Overton '13) on an eigenvalue product problem
(Anstreicher-Lee '04): min { [TA(AoX): X €S%, X; =1 Vi}.

Log eigenvalue product, N=20, 1=400, 1= -4 37938¢+000 Log eigenvalue pioduct, N=20, 1=400, [ = ~4 37938¢+000

T T
—— wis eigvector for eigvalue 10 of final H
—— wis eigvector for eigvalue 20 of final H
—— wis eigvector for eigvalue 30 of final H
~——— wis eigvector for eigvalue 40 of final H
—— wis eigvecior for eigvalue 50 of final H
Wis eigvector for eigvalue 60 of final H

eigenvalues of H

15|

10 0 2[‘)0 460 ﬁ(‘)O 8[;0 10‘00 1260 1400 7.,10 -5 \l] 5 10
) ) iteration ) t i
Hessian eigenvalues: Eigenvectors predict
smoothness versus sharpness identifiable manifold.
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A prox-linear algorithm (L-Wright '08)

min, {f(x) : G(x) € Y}, where f and G are C? and Y is simple.

Example (LASSO and LARS): min {|Ax — b|? : |x|1 < 1}.

Subproblem: form linear approximations f(d) ~ f(x + d) and G
at current feasible x. Since Y simple, easy to solve

mln{f(d )+ pld?: G(d) € Y}

Update: x < x™ ~ x + d. Specifically, x™ feasible, with

oL =)

X+—X —_— —~
b= Fx) — F(d)

>

I\JM—\

If success, repeat; if not, reset p <— 2 and try again.

Typically, at optimality, Y has an identifiable manifold M
at g(x): eventually G(d) € M, and inf{f(x) : G(x) € M} easier.
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Summary

» Variational-analytic insights into computational inversion.

» Key tools: the normal cone and regularity/transversality.

» Sensitivity, error bounds, robustness, and linear convergence.

» Semi-algebraic optimization: generic regularity and
identifiability.

» Quasi-Newton and prox-linear methods for nonsmooth
optimization.
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