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Outline

I Optimization and inverse problems via variational analysis
I A fundamental web of ideas:

I error bounds and sensitivity to data
I robustness to perturbation
I angle of transversality
I linearly convergent algorithms.

I Semi-algebraic geometry and generic regularity
I Some algorithms:

I alternating projections
I nonsmooth quasi-Newton
I a prox-linear method.

I Foundations of active-set methods.
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Theme

variational analysis  ! computational inversion

#

optimization, equilibrium,
control, etc. . . via
nonsmooth geometry
of closed sets X
(maybe nonconvex)
in Euclidean space E.

Key tool: distance d
X

.
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Computational inversion of y 2 �(x)

Problem

Given set-valued mapping � (between Euclidean spaces), find
a solution x with data y 2 �(x)

|{z}

. Equivalently, x 2 ��1(y)
| {z }

.

easy to compute hard
Examples

I Linear programming: Ax  y . Define �(x) = Ax + R

m

+.

I (Banach, 1922) If Id� � is a single-valued contraction, the
iteration x

k+1 = y + x
k

� �(x
k

) converges to the solution.

I Set intersection:
Given sets X and Y ,
find z 2 X \ Y .

Define �(z) = (X � z)⇥ (Y � z).
Then solve (0, 0) 2 �(z).
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A circle of ideas

Consider the problem
y 2 �(x)

locally around (x̄ , ȳ) 2 graph�.

I
Regularity — a linear error bound:

d��1(y)(x)

d�(x)(y)
=

distance to a true solution

measured error

is bounded above. (The sup near (x̄ , ȳ) is the modulus.)

I
Sensitivity of solutions x to data y . (Condition number)

I
Robustness of regularity to changes in �.
(Distance to ill-posedness: Demmel ’87, Renegar ’94.)

I Local linear convergence of algorithms: d�(x
k

)(y)  ↵k .

I What happens for generic data y?
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Fundamental result

Suppose graph� closed and x̄ 2 ��1(ȳ) ⇢ E. Key measures. . .

I
Modulus of regularity.

I
Radius (Dontchev-L-Rockafellar ’03):

inf
n

klinear Gk : �+ G not regular at (x̄ , ȳ + Gx̄)
o

.

I
Angle between
graph� and E⇥ {y}
(the coderivative criterion).

Then the quantity

radius =
1

modulus
= tan(angle),

controls the linear convergence of a simple algorithm.
True for generic data y?
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Example: set intersection, normals, and transversality

(0, 0) 2 �(z) = (X � z)⇥ (Y � z).

Regularity is transversality of X and Y at z̄ :
normal cones N

X

(z̄) and �N
Y

(z̄) intersect
trivially (so, between them, angle > 0).

Alternating projections (von Neumann ’33)
then converges at linear rate depending on
angle (Drusvyatskiy-Io↵e-L ’13).

N
X

(x) at x 2 X consists of

lim
r

�
r

(z
r

� x
r

),

where �
r

> 0, z
r

! x , and |z
r

� x
r

| = d
X

(z
r

).
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A bad example

The problem y 2 �(x) is strongly regular if

��1 single-valued and Lipschitz near (ȳ , x̄)

(as in the Banach contraction mapping theorem).

But regularity can fail badly even for smooth convex optimization
(and hence so does strong regularity).

There is a C1 strictly convex function f : R! R such that
Legendre-Fenchel conjugation

f ⇤(y) = max
x

�

yx � f (x)
 

,

or equivalently, solving y = f 0(x), is not regular for any y .

(f 0)�1 is the Lebesgue singular function, so nowhere Lipschitz.
But what if f is more “concrete”, or “tame” (Grothendieck)?
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Semi-algebraic sets

Polynomial level sets in R

n:

�

x : p(x) < 0
 

and
�

x : p(x)  0
 

.

Basic sets are finite intersections of these.
Finite unions of basic sets are called semi-algebraic.

Semi-algebraicity is prevalent and easy to recognize,
since linear projection maps preserve it (Tarski-Seidenberg).

If X ,Y ⇢ R

n are semi-algebraic, then, for almost all z 2 R

n,
the intersection of X � z and Y is everywhere transversal. Proof:

Theorem (Io↵e ’07). . . after Sard.
For almost all data y , the problem y 2 �(x) is regular at every
solution x , providing � has closed semi-algebraic graph.
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Interlude: nonsmooth optimization via quasi-Newton
Generic regularity suggests linear convergence. Eg:
minimize nonsmooth Lipschitz f : Rn ! R via Clarke criticality. . .

solve 0 2 @f (x) = conv
�

limrf (x
r

) : x
r

! x
 

.

BFGS Algorithm: iterates x
k

, approximate inverse Hessians H
k

.
I x

k+1 approximately minimizes f on x
k

� R+H
k

rf (x
k

).
I H

k+1 minimizes H 7! traceH�1
k

H � log detH
subject to H

�

rf (x
k+1)�rf (xk)

�

= x
k+1 � x

k

.

Popular since 1970 for smooth problems,
yet also e↵ective when nonsmooth.
Why?? Example (L-Overton ’13)
Minimize an eigenvalue product f
(nonsmooth, nonconvex, semi-algebraic,
n = 190), ten random initializations.
What controls the linear rate?
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Generic strong regularity

Theorem (Drusvyatskiy-Io↵e-L ’13) Consider

semi-algebraic � : E!! F with dim(graph�)  dimF.

Then, for almost all data y , the problem y 2 �(x) is

strongly regular at every solution x .

Example Any maximizer x̄ of hy , ·i
over closed X ⇢ E is critical:

y 2 N
X

(x̄).

Suppose X is semi-algebraic.
Then (Drusvyatskiy-L ’13)

dim(graphN
X

)  dimE,

so, for almost all y , strong regularity holds for all x̄ . Hence. . .
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Consequences of strong regularity

For semi-algebraic optimization max
X

hy , ·i with generic data y ,
the condition y 2 N

X

(x) is strongly regular at every maximizer x̄ .
Two consequences, with classical flavor. . .

Quadratic growth
(Bonnans-Shapiro ’00):
there exists  > 0 so

hy , xi  hy , x̄i � |x � x̄ |2

for x 2 X near x̄ .

Second-order condition (Mordukhovich ’92)

(z ,w) 2 NgraphN
X

(x̄ , y) and w 6= 0 ) hz ,wi < 0.

But we can say more. . .
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Identifiability and “active set” philosophy
Many methods for max

X

hy , ·i (high-dimensional and nonsmooth)
generate asymptotically critical x

k

2 X :

there exist y
k

2 N
X

(x
k

) such that y
k

! y .

Example. Proximal point: ⇢(x
k

� x
k+1) + y 2 N

X

(x
k+1).

Suppose X is semi-algebraic and y is generic.
Any maximizer x̄ lies on an identifiable manifold M ⇢ X :
every asymptotically critical sequence eventually lies in M.

Hence the problem reduces to

max
M
hy , ·i.

Low-dimensional and smooth.
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“Blind” algorithms reveal identifiable manifolds

Recall: BFGS (L-Overton ’13) on an eigenvalue product problem

(Anstreicher-Lee ’04): min
n

Q

�
i

(A � X ) : X 2 S

20
+ , X

ii

= 1 8i
o

.

Hessian eigenvalues:
smoothness versus sharpness

Eigenvectors predict
identifiable manifold.
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A prox-linear algorithm (L-Wright ’08)

min
x

�

f (x) : G (x) 2 Y
 

, where f and G are C2 and Y is simple.
Example (LASSO and LARS): min

�

|Ax � b|2 : |x |1  1
 

.

Subproblem: form linear approximations ef (d) ⇡ f (x + d) and eG
at current feasible x . Since Y simple, easy to solve

min
d

�

ef (d) + µ|d |2 : eG (d) 2 Y
 

.

Update: x  x+ ⇡ x + d . Specifically, x+ feasible, with

�

�x+ � (x + d)
�

�  |d |
2

and
f (x)� f (x+)

f (x)� ef (d)
� 1

2
.

If success, repeat; if not, reset µ 2µ and try again.

Typically, at optimality, Y has an identifiable manifold M
at g(x̄): eventually eG (d) 2M, and inf{f (x) : G (x) 2M} easier.
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Summary

I Variational-analytic insights into computational inversion.

I Key tools: the normal cone and regularity/transversality.

I Sensitivity, error bounds, robustness, and linear convergence.

I Semi-algebraic optimization: generic regularity and
identifiability.

I Quasi-Newton and prox-linear methods for nonsmooth
optimization.
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