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Abstract We consider minimization of functions that are compositions of convex
or prox-regular functions (possibly extended-valued) with smooth vector functions. A
wide variety of important optimization problems fall into this framework. We describe
an algorithmic framework based on a subproblem constructed from a linearized
approximation to the objective and a regularization term. Properties of local solutions
of this subproblem underlie both a global convergence result and an identification prop-
erty of the active manifold containing the solution of the original problem. Preliminary
computational results on both convex and nonconvex examples are promising.
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1 Introduction
We consider optimization problems of the form

n&in h(c(x)), (1.1)

where the inner function ¢ : %" — N is smooth. The outer function # : K" —
[—o00, +00] may be nonsmooth, but is usually convex (even polyhedral), and suffi-
ciently well-structured to allow us to solve, relatively easily, subproblems of the form

min h(®(d)) + %|d|2, (1.2)

for affine maps ® and scalars © > 0 (where | - | denotes the Euclidean norm). We
analyze a “proximal” method for the problem (1.1). In its simplest form, for a finite
convex function /, the method is shown below as Algorithm 1.

Algorithm 1 ProxDescent for Finite Convex £

Define constants 7 > 1,0 € (0, 1), and ppjn > 0;
Choose xg € R, 1o > Umins
fork=0,1,2,... do
Set accept < false;
while not accept do
Find the minimizer d of the function /(c(x) + Vc(x)d) + %M|d|2
(terminating if d = 0);
it h(c(x)) — h(c(x +d)) = o [h(c(x)) — h(c(x) + Ve(x)d)] then
J < Max(imins 4/7);
accept < true;
else
W T
end if
end while
X < x+d;
end for

The method repeatedly solves a proximal linearized subproblem of the form
. . K0
min /iy . (d) = h(c(x) 4+ Ve(x)d) + Eldl . (1.3)

to find a trial step d, where the linear map Vc(x) : " — R is the derivative of the
map c at x (representable by the m x n Jacobian matrix). In the algorithmic frame-
work that we discuss later, where the function 4 is not restricted to being polyhedral
or convex, the subproblem solution d is just a first approximation to the step. If 4 is
sufficiently well-structured—an assumption we make concrete using “partial smooth-
ness,” a generalization of the idea of an active set in nonlinear programming—we
may then be able to enhance the step, possibly with the use of higher-order derivative
information.
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A proximal method for composite minimization 503

Although many important problems of the form (1.1) involve finite convex functions
h, we explore extensions to broader classes of functions /. Specifically, we allow that

e 1 may be extended-valued, allowing it to incorporate constraints that must be
enforced;
e h is “prox-regular” rather than convex.

(We note in passing that our analysis extends easily to the case where the function ¢
is defined only locally.) This broader framework requires additional technical over-
head, but we point out throughout the simplifications that are available in the case of
continuous convex &, and in particular polyhedral /.

1.1 Outline

In the next subsection, we discuss the building blocks from variational analysis that
are used in later sections, focusing on key ideas that may be unfamiliar to many
readers—"‘prox-regularity” and “partial smoothness”—and deferring more standard
formal definitions to an “Appendix”. In Sect. 2, we describe how a wide variety of
examples can be posed as composite optimization problems of the form (1.1). We
include problems from approximation, nonlinear programming, and regularized mini-
mization, including nonconvex examples. Given its prevalence, historical importance,
and significance in building intuition and terminology, we pay particular attention to
the case in which the function / is finite and polyhedral. Next, in Sect. 3, we survey
the extensive body of related work.

Section 4 contains our main theoretical tools, pertaining to the subproblem (1.3).
We note that, since any local solution x for the problem (1.1) is critical (meaning that
0 € d(h o ¢)(x), where 9 denotes the subdifferential), a chain rule typically implies
the existence of a vector v such that

v € 9h(c) N Null(Ve(x)*), (1.4)

where ¢ := ¢(x) and * denotes the adjoint map. In examples, we can interpret the
vector v as a Lagrange multiplier. We begin by showing that, when the current point x
is near the critical point x, the proximal linearized subproblem (1.3) has alocal solution
d of size O(|x — x|). To illuminate this idea, consider first a function % that is convex,
lower semicontinuous, and never —oo. Assuming that the vector c(x) + Ve(x)d lies
in the domain of & for some step d € 0", the subproblem (1.3) involves minimizing
a strictly convex function with nonempty compact level sets, and thus has a unique
solution d = d(x). If we assume slightly more—that c(x) + Vc(x)d lies in the relative
interior of the domain of 4 for some d (as holds obviously if / is continuous at c¢(x)), a
standard chain rule from convex analysis implies that d = d(x) is the unique solution
of the following inclusion:

Vex)*v +ud =0, forsomev € dh(c(x) + Ve(x)d). (1.5)

When £ is prox-regular rather than convex, reasonable conditions ensure that the
subproblem (1.3) still has a unique local solution close to zero, for p sufficiently
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504 A.S. Lewis, S. J. Wright

large, also characterized by property (1.5). Then, by projecting the point x + d onto
the inverse image under the map ¢ of the domain of the function 4, we can obtain a
step that reduces the objective.

The final part of Sect. 4 focuses on the common situation in which the function &
is partly smooth at the point ¢ relative to a certain manifold M—a generalization of
the surface defined by the active constraints in classical nonlinear programming. We
give conditions guaranteeing that, when x is close to x, the algorithm “identifies” M,
in the sense that the solution d of the subproblem (1.2) has ®(d) € M.

Section 5 presents the ProxDescent algorithm in full generality and proves a
global convergence result. Finally, Sect. 6 describes some promising preliminary
computational experiments, on convex and nonconvex regularized linear least-squares
problems, together with a polyhedral penalty function arising from a nonlinear pro-
gramming application.

1.2 Variational analysis tools

We begin with some important basic ideas and notation. We denote by Pg(v) the usual
Euclidean projection of a vector v € R onto a closed set S C H™. The distance
between x and the set S is

dist (x, §) = inf |x — y|.
yes

We use B¢ (x) to denote the closed Euclidean ball of radius € around a point x.

We write )i for the extended reals [— oo, +00], and consider a function & : " — 9.
The notion of the subdifferential of & at a point ¢ € N, denoted dh(c), provides a
powerful unification of the classical gradient of a smooth function and the subdif-
ferential from convex analysis. It is a set of generalized gradient vectors, coinciding
exactly with the classical convex subdifferential [39] when # is lower semicontinu-
ous and convex, and equaling {V/(¢)} when £ is C' around ¢. For formal definitions
from variational analysis, we refer the reader to standard texts such as [40] and [35].
For ease of reading, we collect such definitions (along with brief discussions) in an
“Appendix”.

Since the notion of “prox-regularity” is crucial for our development, we quote a
full definition here, from [40, Definition 13.27].

Definition 1.1 A function & : W" — N is prox-regular at a point ¢ € N" for a
subgradient v € dh(c) if h is finite at ¢, locally lower semicontinuous around ¢, and
there exists p > 0 such that

h(c) = hie) + (v, ¢ —¢) — §|c’ —c?

whenever points ¢, ¢’ € RW™ are near ¢ with the value A (c) near the value 4 (¢) and for
every subgradient v € dh(c) near v. Further, & is prox-regular at c if it is prox-regular
at ¢ for every v € 9h(c).

While this definition appears formidably technical in its generality, it holds commonly
in practice. Prevalent examples include continuous functions # with the property that
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the function A + k| - |2 is convex for some constant «. For further discussion, see the
“Appendix”.

A weaker property than the prox-regularity of a function 4 is “subdifferential reg-
ularity.” Formal definitions and discussion can be found in standard texts and in the
“Appendix”. Here, we simply note that both C! functions and lower semicontinuous
convex functions are subdifferentially regular, as are sums of such functions.

We next turn to the idea of “partial smoothness” introduced by Lewis [30], a
variational-analytic formalization of the notion of the active set in classical nonlin-
ear programming: see also Hare and Lewis [22, Definition 2.3]. A set M C Q" is
a manifold about a point ¢ € M if it can be described locally by a collection of
smooth equations with linearly independent gradients. More precisely, there exists
amap F : " — MK that is C% around &, with VF(¢) surjective, such that points
¢ € W™ near ¢ lie in M if and only if F(c) = 0. The normal space to M at ¢, denoted
N4(€) is then just the range of V F(c)*.

Definition 1.2 Given a manifold M C R about a point ¢, a function # : X" — R
is partly smooth at ¢ relative to M if h is subdifferentially regular at all points ¢ € M
near ¢, the dependence of the value 4 (c) and the (nonempty) subdifferential dk(c)
on the point ¢ € M are C> and continuous respectively, and furthermore the affine
span of 04 (c) is a translate of the normal space N4 (c). We refer to M as the active
manifold.

As with prox-regularity, this definition appears technical. To illustrate, consider
again the example of continuous function 4 such that i 4 «| - |? is convex for some k.
Since such functions are always subdifferentially regular, partial smoothness amounts
to smoothness of the restriction /| 4, continuity with respect to the point ¢ € M of
the classical directional derivative h’(c; d) for all fixed directions d, and the property
K (¢;d) > —h'(¢; —d) for all nonzero d € Na(C).

2 Examples

Our basic framework admits a wide variety of interesting problems, as we show in
this section.

2.1 Approximation problems

Example 2.1 (Least squares, £1, and Huber approximation) The formulation (1.1)
encompasses both the usual (nonlinear) least squares problem if we define i (-) = |- |2,
and the £; approximation problem if we define 2(-) = | - |1, the £; norm. Another
popular robust loss function is the Huber function defined by h(c) = > /L, ¢(ci),
where

1.2
N LS (leil < T)
() = HTC,’ — 372 (il > ).

Example 2.2 (Sum of Euclidean norms) Given a collection of smooth vector functions
gi * MW" — W™ fori =1,2,...,1,consider the problem
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506 A.S. Lewis, S. J. Wright

t
min > [g;(x)].
i=1

We can place such problems in the form (1.1) by defining the smooth vector function
c MW = WM x ("2 x ..o x R"™ by ¢ = (g1, 82,--.,8), and the nonsmooth
function i : N x - x "™ — N by

t
h(g1, 82, -, 8) = D lgil-
i=1

This form is seen in facility location problems and in regularized optimization
problems with group-sparse regularizers.

2.2 Nonlinear programming penalty functions
Next, we consider examples motivated by penalty functions for nonlinear program-
ming.
Example 2.3 (€1 penalty function). Consider the following nonlinear program:
min f(x)
subjectto g;i(x) =0 (1 <i <),

gx) =0 (j+1=<i=<h),
x € X, 2.1)

where the polyhedron X C R" describes constraints on the variable x that are easy to
handle directly. The £ penalty function formulation is

J k
min f(x) +v > lgi (0l +v > max (0, gi(x), (2.2)
i=1 i=j+l1

where v > 0 is a scalar parameter. We can express this problem in the form (1.1) by
defining the smooth vector function

c) = (00, (0L, x) €3 x 9 x 9"

and the extended polyhedral convex function 4 : ;% x 9K x R" — R by

J k
FHvY lgil+v > max(0,g) (x € X)

i=1 i=j+1
+00 (x ¢ X).

h(f. g x)=
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2.3 The finite polyhedral case

A generalization of the polyhedral convex function of the previous subsection is
obtained by defining

h(c) = r}léiIXHhi, c) + Bik (2.3)

where [ is a finite set of indices, with i; € R and B; € N for alli € I. We return to

this case below to illustrate much of our theory (in Sects. 4.4, 4.5, for example).
Assume that the map c: R" — R is C! around a critical point X € %" for the

composite function 4 o ¢, and let ¢ = c(x). Define the set of “active” indices

I= argmax{(hi,E) + i€ I}.

Then, denoting convex hulls by conv, we have dh(c) = conv{h; : i € I}. The basic
criticality condition (1.4) becomes existence of a vector A € R/ satisfying

220 and > A [VC(?*}”] - [ﬂ 2.4)

iel

The subgradient v is then D ; .7 A;h;.
Compare this condition with the one obtained from the standard nonlinear pro-
gramming framework, which is

—t subjectto (hj,c(x))+Bi+t <0 (el). 2.5)

min
(x,1)ER" XN

At the point ()E, —h (E)), the conditions (2.4) are just the standard first-order optimality
conditions, with Lagrange multipliers A;. The fact that the vector v in the criticality
condition (1.4) is closely identified with A via the relationship v = >, _j A;#; moti-
vates our terminology “multiplier vector”.

2.4 Regularized minimization problems

A large family of instances of (1.1) arises in the area of regularized minimization,
where the minimization problem has the following general form:

min f(x) + 7lxls (2.6)

where f : " — N is a smooth objective, while |x|, is a continuous, nonnegative,
usually nonsmooth function, and 7 is a nonnegative regularization parameter. Such
formulations arise when we seek an approximate minimizer of f that is “simple” in
some sense; the purpose of the second term | x|, is to promote this simplicity property.
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508 A.S. Lewis, S. J. Wright

Larger values of t tend to produce solutions x that are simpler, but less accurate as
minimizers of f. The problem (2.6) can be put into the framework (1.1) by defining

c(x) = [fix)] eN h(fix) = f +7ix|s 2.7

We list now some interesting cases of (2.6).

Example 2.4 (£1-Regularized minimization) The choice | - |« = | - |1 in (2.6) tends
to produce solutions x that are sparse, in the sense of having relatively few nonzero
components. Larger values of 7 tend to produce sparser solutions. Compressed sensing
is a particular area of interest, in which the objective f is typically a least-squares
function f(x) = (1/2)|Ax — b|2; see [9] for a survey. Regularized least-squares
problems (or equivalent constrained-optimization formulations) are also encountered
in statistics; see for example the LASSO [47] and LARS [16] procedures, and basis
pursuit [10].

A related application is regularized logistic regression, where again | - [, = ||, but
f is (the negative of) an a posteriori log likelihood function [45]. Here, the components
of x are weights applied to the features in a data vector. We aim to identify those features
(corresponding to the nonzero locations in x) that are most effective in predicting a
binary outcome.

Another interesting class of regularized minimization problems arises in matrix
completion, where we seek an m x n matrix X of smallest rank that is consistent with
given knowledge of various linear combinations of the elements of X; see [7,8,37].
Much as the £; norm of a vector x is used as a surrogate for cardinality of x in the
formulations of Example 2.4, the nuclear norm is used as a surrogate for the rank of X
in formulations of the matrix completion problem. The nuclear norm | X |, is defined
as the sum of singular values of X, and we have the following specialization of (2.6):

1
min =] AX) — b> + 7| X|., (2.8)
Xegmxn 2

where A denotes a linear operator from R”*" to NP, and b € R? is the observation
vector. Note that the nuclear norm is a continuous and convex function of X.

Finally, we mention image denoising and deblurring problems, which are often
posed in the form (2.6), where | - |, is a total-variation regularizer [41] that induces
“natural” qualities in the solution images. Specifically, the recovered images contain
large areas of near-constant color or shade, separated by sharp edges.

For regularized minimization problems of the form (2.6), the subproblem (1.3) has
the form

min f(x)+(Vf(x),d)+%|d|2+r|x+d|*. (2.9)

An equivalent formulation can be obtained by shifting the objective and making the
change of variable z := x + d:
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1
min %|z—y|2+t|z|*, where y =x — —V f(x). (2.10)

z w
When the regularization function | - | is separable in the components of x, as when
|“l« =] -Jror|-]=]- |%, this problem can be solved in O(n) time. (This fact is
key to the practical efficiency of methods based on these subproblems in compressed
sensing; see [51].) Forthe case |- |« = |- |1,if we seta = ©/u, the solution of (2.10) is

0 (lyil = a)

Zi=31yi—a (yi>ao) (2.11)

yit+a (i <—a).

This operation is known commonly as the “shrink operator.”
For matrix completion (2.8), the formulation (2.10) of the subproblem becomes

o
min —

Zepmxn 2|Z_Y|%+T|Z|*’ (212)
JU

where | - | denotes the Frobenius norm of a matrix and

Y=X-— %A*[A(X) —b]. (2.13)

It is known (see for example [7]) that (2.12) can be solved by using the singular-
value decomposition of Y. Writing ¥ = UX VT, where U and V are orthogonal and
Y = diag(o1, 02, ..., Omingm,n)), We have Z = UE,/MVT, where the diagonals of
Y./ are max(o; — t/u,0) fori = 1,2,..., min(m, n). In essence, we apply the
shrink operator to the singular values of Y, and reconstruct Z by using the orthogonal
matrices U and V from the decomposition of Y.

2.5 Nonconvex problems

Each of the examples above involves a convex outer function /. In principle, however,
the techniques we develop here also apply to a variety of nonconvex functions. This
section discusses some applications in which 4 is nonconvex.

Example 2.5 (problems involving quadratics) Given a general quadratic function f :
NP — N (possibly nonconvex) and a smooth function ¢ : X" — NP, consider
the problem min, f (c 1 (x)). This problem trivially fits into the framework (1.1), and
the function f, being C?, is everywhere prox-regular. The subproblems (1.2), for
sufficiently large values of the parameter i, simply amount to solving a linear system.

More generally, given another general quadratic function g : R — N, and another
smooth function ¢, : W* — N9, consider the problem

min f(c;(x)) subjectto g(c2(x)) < 0.

xenn

We can express this problem in the form (1.1) by defining the smooth vector function
¢ = (c1, ¢2) and defining an extended-valued nonconvex function
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fler)  (gle2) =0)

Mer =140 (gte) > 0).

The epigraph of 4 is

{(cr.c2.0) 1 g(c2) <0, 1> f(cn)},

a set defined by two smooth inequality constraints: hence % is prox-regular at any
point (cy, ¢2) satistfying g(c2) < 0 and Vg(cz) # 0. The resulting subproblems
(1.2) are all in the form of the standard trust-region subproblem, and hence relatively
straightforward to solve quickly.

As one more example of this type, we consider the case in which the outer function
h is defined as the maximum of a finite collection of quadratic functions (possibly
nonconvex): h(x) = max{fij(x) : i = 1,2,...,k}. The subproblems (1.2) are as
follows:

min {z:rz fi(cb(d))-i-%|d|2, deR" 1en, i= 1,2,...,k}.

where the map @ is affine. For sufficiently large values of the parameter wu, this is a
quadratically-constrained convex quadratic program, which can in principle be solved
efficiently by an interior point method.

To conclude, we consider three more nonconvex examples. The first, due to
Mangasarian [31], is used by Jokar and Pfetsch [24] to find sparse solutions of under-
determined linear equations. The formulation of [24] can be stated in the form (2.6)
where the regularization function | - |, has the form

n
el = D (1 — e
i=1

for some parameter « > 0. It is easy to see that this function is nonconvex but prox-
regular, and nonsmooth only at x; = 0.

Fan and Li [17] propose the smoothly clipped absolute deviation (SCAD) regular-
izer. This problem has the form (2.6), and behaves like the £1 norm near the origin,
transitioning (via a concave quadratic) to a constant for large loss values. Specifically,
we have | - [« = D7 ¢(x;), where

Alxil (Ixil < &)
P(xi) = 3 —(xi|* = 2arlx;| + 2% /(2(a — 1)) (A < |xi| < ah)
(a+ 1DHr%/2 (Ixi| > ar).

Here A > 0 and a > 1 are tuning parameters. The minimum concave penalty (MCP)
regularizer of Zhang [54] has a similar form, with

Mxil = 1% 2/ a)  (xi| < ah)

d(x;) = {a12/2 (x| > ah. (2.14)
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SCAD and MCP have been shown to avoid the bias property associated with the £
penalty function, in which nonzero values of x are skewed toward zero.

3 Related work

We discuss here some connections of our approach with existing literature.

3.1 Convex h

Burke [3] uses a similar composite function to the one analyzed here, and a subproblem
like (1.2) to calculate the search direction d. In contrast to our approach, the analysis
in [3] is restricted to finite convex A, and the algorithm uses a backtracking line search
to ensure descent in the composite objective at each iteration. In place of the prox term
|d|?/2 of (1.2), Burke uses “casting functions” that serve a similar purpose of ensuring
well posedness of the subproblem. Sagastizabal [42] considers the problem (1.1) in
which £ is finite, convex, and positively homogeneous. Her algorithm is based on a
subproblem like (1.3), differing mainly in that / is replaced by a lower-bounding bundle
approximation. Lan [27, Section 4] discusses (1.1) in which & and the components
of c¢(x) are all Lipschitz continuous and convex. Under certain assumptions on the
smoothness of ¢, a subproblem is defined that makes use of an approximation like the
h (c(x) + Vc(x)d) of (1.3), but taking the maximum of such approximations over all
previous iterates, not just the one from the latest iterate. Global convergence is proved
[27, Corollary 1] at rates that are optimal among first-order schemes.

3.2 Polyhedral h

Various approaches have been proposed for the case of & finite and polyhedral. One
work closely related to ours is by Fletcher and Sainz de la Maza [18], who discuss
an algorithm for minimization of the ¢; penalty function (2.2) for the nonlinear opti-
mization problem (2.1). At each iteration, their method solves a linearized trust-region
problem that can be expressed in our general notation as follows:

rrbin h(c(x) + Vc(x)d) subjectto |d| < p, 3.1

where p is some trust-region radius. Note that this subproblem is closely related to
our linearized subproblem (1.3) when the Euclidean norm is used to define the trust
region. However, the £, norm is preferred in [18], as it allows the subproblem (3.1)
to be expressed as a linear program. The algorithm in [18] uses the solution of (3.1) to
estimate the active constraint manifold, then computes a step that minimizes a model of
the Lagrangian function for (2.1) while fixing the identified constraints as equalities.
An active-constraint identification result is proved [18, Theorem 2.3]; this result is
related to our Theorems 4.11 and 5.5 below.

Byrd et al. [6] describe a successive linear-quadratic programming method, based
on [18], which starts with solution of the linear program (3.1) (with £ o, trust region) and
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uses it to define an approximate Cauchy point, then approximately solves an equality-
constrained quadratic program (EQP) over a different trust region to enhance the step.
This algorithm is implemented in the KNITRO package for nonlinear optimization as
the KNITRO-ACTIVE option.

Friedlander et al. [19] solve a problem of the form (1.3) for the case of nonlinear
programming, where £ is the sum of the objective function f and the indicator function
for the equalities and the inequalities defining the feasible region. The resulting step
can be enhanced by solving an EQP.

Other related literature on composite nonsmooth optimization problems with gen-
eral finite polyhedral convex functions (Sect. 2.3) includes the papers of Yuan [52,53]
and Wright [49]. The approaches in [49,53] solve a linearized subproblem like (3.1),
from which an analog of the “Cauchy point” for trust-region methods in smooth uncon-
strained optimization can be calculated. This calculation involves a line search along
a piecewise quadratic function and is therefore more complicated than the calculation
in [18], but serves a similar purpose, namely as the basis of an acceptability test for a
step obtained from a higher-order model.

3.3 Regularized form (2.6)

For general outer functions £, the theory is more complex. An early approach to reg-
ularized minimization problems of the form (2.6) for a lower semicontinuous convex
function | - |, is due to Fukushima and Mine [20]. They calculate a trial step at each
iteration by solving the linearized problem (2.9).

Subproblems of the form (2.9) were used in compressed sensing algorithms by
Wright, Nowak, and Figueiredo [51] and Hale et al. [21], in conjunction with an
adaptive strategy for choosing w. (Indeed, this application provided the motivation for
the current study.)

Combettes and Wajs [12] study formulations similar to (2.6) and algorithms that use
subproblems like (2.9). Apart from assuming convexity, their setting is more general.
Convergence is proved for algorithms that use values of 1 in (2.9) that are large enough
to guarantee descent in the objective at every iteration, regardless of iterate x. This
assumption contrasts with the adaptive approach used in [51] and in Sect. 5 below.

3.4 ¢(x) = x: Proximal-point methods

The case when the map c is simply the identity has a long history. The iteration
Xp+1 = Xk + di, where dy minimizes the function d — h(x; + d) + %|d|2, is the
well-known proximal point method. For lower semicontinuous convex functions #,
convergence was proved by Martinet [32] and generalized by Rockafellar [38]. For
nonconvex f, a good survey up to 1998 is by Kaplan and Tichatschke [25]. Pennanen
[36] took an important step forward, showing in particular that if the graph of the
subdifferential o/ agrees locally with the graph of the inverse of a Lipschitz function
(a condition verifiable using second-order properties including prox-regularity—see
Levy [29, Cor. 3.2]), then the proximal point method converges linearly if started
nearby and with regularization parameter ; bounded away from zero. This result was
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foreshadowed in much earlier work of Spingarn [46], who gave conditions guarantee-
ing local linear convergence of the proximal point method for a function 4 that is the
sum of lower semicontinuous convex function and a C2 function, conditions which
furthermore hold “generically” under perturbation by a linear function. Inexact vari-
ants of Pennanen’s approach are discussed by Iusem, Pennanen, and Svaiter [23] and
Combettes and Pennanen [11]. In this current work, we make no attempt to build on
this more sophisticated theory, preferring a more direct and self-contained approach.

3.5 Manifold identification

The issue of identification of the face of a constraint set on which the solution of a
constrained optimization problem lies has been the focus of numerous works. For the
problem min,cx f(x), foraclosed set X C R", some papers show that the projection
of the point x — (1/)V f (x) onto the feasible set X (for some fixed u > 0) lies on the
same face as the solution x, under certain nondegeneracy assumptions on the problem
and geometric assumptions on X . Identification of so-called quasi-polyhedral faces of
convex X was described by Burke and Moré [5]. An extension to the nonconvex case
is provided by Burke [4], who considers algorithms that work with linearizations of
the constraints describing X. Wright [50] considers surfaces of a convex set X that
can be parametrized by a smooth algebraic mapping, and shows how algorithms of
gradient projection type can identify such surfaces once the iterates are sufficiently
close to a solution. Lewis [30] and Hare and Lewis [22] extend these identification
results to the nonconvex, nonsmooth case by using concepts from nonsmooth analysis,
including partly smooth functions and prox-regularity. In their setting, the concept of
an identifiable face of a feasible set is extended to a certain type of manifold with
respect to which the function £ in (1.1) is partly smooth (see Definition 1.2 above).

A rich class of convex composite functions with partly smooth structure was dis-
cussed in detail by Bonnans and Shapiro [2] and Shapiro [44]. For a detailed discussion
of the relationship between that class and partial smoothness, see [1].

3.6 Alternative subproblems

Another line of relevant work is associated with the VU theory introduced by
Lemaréchal, et al. [28] and subsequently elaborated by these and other authors. The
focus is on minimizing convex functions f (x) that, again, are partly smooth—smooth
(“U-shaped”) along a certain manifold through the solution X, but nonsmooth (“V-
shaped”) in the transverse directions. Sagastizabal and Mifflin [43] discuss the “fast
track,” which is essentially the manifold containing the solution x along which the
objective is smooth. Similarly to [18], they are interested in algorithms that identify
the fast track and then take a minimization step for a certain Lagrangian function along
this track. It is proved in [43, Theorem 5.2] that under certain assumptions, when x is
near x, the proximal point x + d obtained by solving the problem

. E 2
Hbln fx+4d)+ 2|d| (3.2)
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lies on the fast track. This identification result is similar to the one we prove in Sect. 4.5,
but the calculation of d is different. In our case of f = h o ¢, (3.2) becomes

min h(c(x +d) + %|d|2. (3.3)

In many applications of interest, ¢ is nonlinear, so the subproblem (3.3) is generally
harder to solve for the step d than our subproblem (1.3).

Mifflin and Sagastizdbal [33] describe an algorithm in which an approximate solu-
tion of (3.2) is obtained, again for the case of a convex objective, by making use of a
piecewise linear underapproximation to their objective f, usually constructed from a
bundle of subgradients gathered at earlier iterations. Approximations to the manifold
of smoothness for f are constructed, and a Newton-like step for the Lagrangian is taken
along this manifold. Daniilidis et al. [13] use the terminology “predictor-corrector” to
describe algorithms of this type. Miller and Malick [34] show how algorithms of this
type are related to Newton-like methods that have been proposed earlier in various
contexts.

Various of the algorithms discussed above make use of curvature information for
the objective on the active manifold to accelerate local convergence. The algorithmic
framework that we describe in Sect. 5 can be modified to incorporate similar tech-
niques, while retaining its global convergence and manifold identification properties.
Algorithms with this flavor have been described in [45] for the case of £1-regularized
logistic regression, and [48] for ¢;-regularized least squares.

4 Properties of the proximal linearized subproblem

We show in this section that when & is prox-regular at ¢, under a mild additional
assumption, the subproblem (1.3) has a local solution d with norm O (|]x — x|), when
the parameter u is sufficiently large. When # is convex, this solution is the unique
global solution of the subproblem. We show too that a point x* near x + d can be
found such that the objective value h(c(x+)) is close to the prediction of the model
function A (c(x) + Ve(x)d) from (1.3). Further, we describe conditions under which
the subproblem correctly identifies the manifold M with respect to which 4 is partly
smooth at the solution of (1.1).

4.1 Lipschitz properties

We start with technical preliminaries. Allowing non-Lipschitz or extended-valued
outer functions 4 in our problem (1.1) is conceptually appealing, since it allows us
to model constraints that must be enforced. However, this flexibility presents certain
technical challenges, which we now address. We begin with a simple example, to
illustrate some of the difficulties.

Example 4.1 Define a C? function ¢ : N - N2 by c(x) = (x, x2), and a lower
semicontinuous convex function 4 : 2 — N by
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y o @z2)
h(y,z) =
0 =17 (z < 2y2).
The composite function & o ¢ is simply 8o}, the indicator function of {0}. This function
has a global minimum value zero, attained uniquely by x = 0.

At any point x € 0, the derivative map Ve(x) : i — 02 is given by Ve(x)d =
(d, 2xd) for d € 9. Then, for all nonzero x, it is easy to check that

h(c(x) + Vc(x)d) = 400 foralld € N,

so the corresponding proximal linearized subproblem (1.3) has no feasible solutions:
its objective value is identically +oo.
The adjoint map Ve(0)* : 2 — 9 is given by Ve (0)*v = vy for v € %2, and

3n(0,0) = {v e R 1 vy =1, v <0}

Hence the criticality condition (1.4) has no solution v € N2

This example illustrates two fundamental difficulties. The first is theoretical: the
basic criticality condition (1.4) may be unsolvable, essentially because the chain rule
fails. The second is computational: if, implicit in the function %, are constraints on
acceptable values for c(x), then curvature in these constraints can cause infeasibil-
ity in linearizations. As we see below, resolving both difficulties requires a kind of
“transversality” condition common in variational analysis.

In this section we make use of the normal cone to a set S at a point s € S, denoted
by Ns(s), defined in the “Appendix”. When S is convex, it coincides exactly with the
classical normal cone from convex analysis, while for smooth manifolds it coincides
with the classical normal space.

The transversality condition we need involves the “horizon subdifferential” of the
function # : W™ — 9N at the point ¢ € N, denoted 9°°h(c). This object, which
recurs throughout our analysis, consists of a set of “horizon subgradients”, capturing
information about directions in which & grows faster than linearly near c. (See the
“Appendix” for a formal definition.) This idea simplifies in important special cases. If
h is convex, finite, and lower semicontinuous at ¢, we have the following relationship
between the subdifferential and the classical normal cone to the domain (see [40,
Proposition 8.12]): 3%°h(¢) = Ngom»(¢). We have further that 9°°h(c) = {0} if & is
locally Lipschitz around ¢. This condition holds in particular for a convex function &
that is continuous at c.

We seek conditions guaranteeing a reasonable step in the proximal linearized sub-
problem (1.3). Our key tool is the following technical result.

Theorem 4.1 Consider alower semicontinuous functionh: W™ — R, apoint7 € R™
where h(Z) is finite, and a linear map G : X' — R satisfying

3°h(z) N Null(G*) = {0}.

@ Springer



516 A.S. Lewis, S. J. Wright

Then there exists a constant y > 0 such that, for all vectors z € X" and linear maps
G : N — RN with (z, G) near (Z, G), there exists a vector w € N" satisfying

lw| < ylz—2Z| and h(z+ Gw) < h(Z) + ylz —z|.

Notice that this result is trivial if 4 is locally Lipschitz (or in particular continuous
and convex) around z, since we can simply choose w = 0. The non-Lipschitz case is
harder; our proof appears below following the introduction of a variety of ideas from
variational analysis whose use is confined to this subsection. We refer the reader to
Rockafellar and Wets [40] or Mordukhovich [35] for further details. First, we need a
“metric regularity” result, which is proved below by means of a result from Dontchev,
Lewis, and Rockafellar [15]. An alternative proof, which sets the result in a broader
context, appears in the “Appendix”.

Theorem 4.2 (Uniform metric regularity under perturbation) Suppose that the closed
set-valued mapping F : NP = N1 is metrically regular at a point u € NP for a point
v € F(u): in other words, there exist positive constants k and a such that all points
u € B,(u) and v € B,(v) satisfy

dist(u, F~'(v)) < k dist(v, F(w)). 4.1

Then there exist constants 8,y > 0 such that all linear maps H: RNP — N9 with
|H| < 8 and all points u € Bs(u) and v € Bs(v) satisfy

dist(u, (F + H)™'(v)) < ydist(v, (F + H)(u)). 4.2)

Proof We follow the notation of the proof of [15, Theorem 3.3]. Fix any constants
re .k, ae (0, 2 =) min{],K}), 5 e (o, min {3, hay x})
4 4" 4k

Then the proof shows inequality (4.2), if we define y = «/(1 — kX). O

Using this result, and given a closed set S containing 0, we identify a condition
under which any vector v can be projected to S along the range space of a given matrix,
with the difference between v and its projection being bounded in terms of |v|. We
prove this result in the “Appendix”.

Corollary 4.3 Consider a closed set S C R with O € S, and a linear map A: RP —
N9 satisfying

Ng(0) N Null(A*) = {0}.

Then there exists a constant y > 0 such that, for all vectors v € R and linear maps
A NP — N9 with (v, A) near (0, A), the inclusion

v+Au e S

has a solution u € NP satisfying |u| < y|v|.
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We are now ready to prove the main result of this subsection.

Proof of Theorem 4.1 Let S C 9™ x N be the epigraph of i, and define a map
A" x N — R x R by A(z, 7) = (Gz, 7). From 9*°h(z) N Null(G*) = {0},
we have Null(A*) = Null(G™*) x {0}, so [40, Theorem 8.9] shows that

Ns(Z, h(Z)) N Null(A*) = {(0, 0)}.

For any vector z and linear map G with (z, G) near (z, G), the vector (z, 0) € R x R
is near the vector (z, 0) and the map (w, ) +— (Gw, 7) is near the map (w, t) >
(Gw, 7). The previous corollary shows the existence of a constant y > 0 such that,
for all such z and G, the inclusion

(z,0) + (Gw, 1) € S

has a solution satisfying |(w, 7)| < y|(z — z, 0)|, and the result follows. O

We end this subsection with another tool to be used later, whose proof (in the
“Appendix”) is a straightforward application of standard ideas from variational analy-
sis. Like Theorem 4.2, this tool concerns metric regularity, this time for a constraint
system of the form F(z) € S for an unknown vector z, where the map F is smooth,
and S is a closed set.

Theorem 4.4 (Metric regularity of constraint systems) Consider a C' map F: RP —
N9, a point 7 € NP, and a closed set S C N1 containing the vector F(Z). Suppose the
condition

Ng(F(2)) N Null(VF(2)*) = {0}

holds. Then there exists a constant k > 0 such that all points z € NP near 7 satisfy
the inequality

dist(z, F~1(9)) < Kk dist(F(2), S).

4.2 The proximal step

We now prove a key result. Under a standard transversality condition, and assuming
the proximal parameter p is sufficiently large (if the function % is nonconvex), we
show the existence of a step d = O(|x — X|) in the proximal linearized subproblem
(1.3) with corresponding objective value close to the critical value A (c).

When the outer function / is locally Lipschitz (or, in particular, continuous and
convex), this result and its proof simplify considerably. First, the transversality condi-
tion is automatic. Second, while the proof of the result appeals to the technical tool we
developed in the previous subsection (Theorem 4.1), this tool is trivial in the Lipschitz
case, as we noted earlier. We state the theorem in a form that encompasses both the
general case and the specialization to convex /.
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Theorem 4.5 (Proximal step) Consider a function h: W" — % and a map c: R* —
W™, Suppose that ¢ is C* around the point X € W, that h is prox-regular at the
point ¢ = c(x), and that the composite function h o c is critical at Xx. Assume the
transversality condition

d%h(G) N Null(Ve(®)*) = {0} 4.3)

Then there exist numbers i > 0, 6 > 0, and p > 0, and a mapping d : Bs(x) X
(i, 00) — N such that the following properties hold.

(a) For all points x € Bs(x) and all parameter values i > [, the step d(x, L) is a
local minimizer of the proximal linearized subproblem (1.3) with

h(c(x) + Ve(x)d(x, ) + %Id(x, wI* < hcx)),

and moreover |d(x, n)| < plx — x|.
(b) Given any sequences x, — % and ju, > i, then if either p.|x, — X|> — 0 or
h(c(x;)) = h(c), we have

h(c(xr) + Ve(x)d (i, i) — h(@). 4.4)

(c) When h is convex and lower semicontinuous, the results of parts (a) and (b) hold
with 1 = 0.

Proof Without loss of generality, suppose x = 0 and ¢ = ¢(0) = 0, and furthermore
h(0) = 0. By assumption, 0 € d(k o ¢)(0) C Vc(0)*3h(0), using the chain rule [40,
Thm 10.6], so there exists a vector v € d4(0) N Null(Vc(0)*).

We first prove part (a). By prox-regularity, there exists a constant p > 0 such that

h(z) = (v.2) — §|z|2 4.5)

for all small vectors z € N". Hence, there exists a constant §; > 0 such that Vc is
continuous on Bs, (0) and

h(d) = (v, ¢() + Ve(d) = Sle(x) + Ve + S1dP?
for all vectors x, d € Bs, (0). As a consequence, we have that

Iy (d) > {(v, ¢(x) + Ve(x)d) — §|c(x) + vc(x)d|2} ¥ %|d|2,

min
[x|<é1, |d]=61
and the term in braces is finite by continuity of ¢ and V¢ on Bs, (0). Hence by choosing

[ sufficiently large (certainly greater than p||Vc(0) ) we can ensure that & xald) =
1 whenever [x| < &1, |d| = §1. Then for x € Bs,(0), |d| = &1, and > 1, we have

1 1
he () = i (d) + 5 (1 = wld)?* > 1+ = )87 (4.6)
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Since ¢ is C? at 0, there exist constants B > 0and §, € (0, §1) such that, for all
x € Bs,(0), the vector

z(x) = c(x) — Ve(x)x “@.7

satisfies |z(x)| < ﬂ|x|2. Setting G = Vc(x), G = Ve(0),z =0, and z = z(x) in
Theorem 4.1, we obtain the following result. For some constants y > 0 and §3 €
(0, 82), given any vector x € Bg,(0), there exists a vector d (x) € N" (defined by
c?(x) := w — x, in the notation of the theorem) satisfying

Ix +d(x)| < ylz(x)] < yBlxI?
h(c(x) + Ve()d(x)) < ylz(x)] < yBIx|.

We deduce the existence of a constant §4 € (0, 63) such that, for all x € B, (0), the
corresponding ﬁ(x) satisfies |c§(x)| < |x| + yBlx|* < 81, and

By u(d(x)) = h(c(x) + Ve(x)d(x)) + %ki(x)ﬁ
u 1
< yBlx)* + %(m +yBIP)’ + 50— 8]
1 ~\ 2
<1+ E(M — 1)oy.

The lower semicontinuous function /1, ;, must have a minimizer (which we denote
d(x, pn)) over the compact set Bs, (0). Since d = 0 is feasible for Bs, (0), we must
have hy , (d(x, n)) < hy . (0) = h(c(x)). Moreover, the inequality above implies
that the corresponding minimum value is majorized by ., (d(x)), and thus is strictly
less than 1 + (1/2)(n — /1)6%. But inequality (4.6) implies that this minimizer must
lie in the interior of the ball Bs, (0); in particular, it must be an unconstrained local
minimizer of &, ,. By setting § = 84, we complete the proof of the first part of (a).
Notice further that for x € Bj, (0), we have

h(c(x) + Ve@x)d(x, p))
n 1% 2
< heu(d e, 10) < heu(d0) < yBIP + (1l + yBIe)”. - 48)
We now prove the remainder of part (a), that is, uniform boundedness of the
ratio |d(x, u)|/|x|. Suppose there are sequences x, € Bs(x) and u, > @ such that
|dy|/|xr| — oo, where we use notation d, := d(x,, i) for brevity. Since |d,| < §;

by the arguments above, we must have x, — 0. By the arguments above, for all large
r we have the following inequalities:

M 2
yBIx | + 7’(|xr| + yBlxr %)
> hyy o, (dy)

@ Springer



520 A.S. Lewis, S. J. Wright

> (v, ¢(x,) + Ve(x)dy) — §|c<xr) + Ve()d > + %wz.
Dividing each side by (1/2)u,|x,|* and letting » — oo, we recall the inequalities
wr > it > plVe(0)||? > 0 and observe that the left-hand side remains finite, while
the right-hand side is eventually dominated by (1 — p||Vc(0) 1%/ )\dy /1%, 12, which
approaches oo, yielding a contradiction.

For part (b), suppose first that w, |x, |2
(4.8), we have that

— 0. By substituting (x, 1) = (x,, ur) into

lim sup h(c(xr) + Vc(xr)dr) <0. 4.9)

From part (a), we have that |d,|/|x,| is uniformly bounded, hence d, — 0 and thus
c(xy) + Ve(xy)d, — 0. Being prox-regular, 4 is lower semicontinuous at 0, so

liminf /(c(x,) + Ve(x,)d,) > 0.

Combining these last two inequalities gives h(c(xr) + Vc(xr)d,) — 0, as required.
Now suppose instead that 2 (c(x,)) — h(¢) = 0. We have from (4.8) that

h(c(xr) + Vc(xr)dr) = hxr,ur (dr) = hx,,u, 0) = h(c(xr))-

Taking the lim sup, we again obtain (4.9), and the result follows as before.

For part (c), when £ is lower semicontinuous and convex, the argument simplifies.
We set p = 0 in (4.5) and choose the constant § > 0 so the map V¢ is continuous on
Bs(0). For constants 8 and y as before, Theorem 4.1 again guarantees the existence, for
all small points x, of a step d (x) satisfying /i (c(x) + Ve(x)d (x)) < yBx|?. It follows
that the proximal linearized objective h, ,, is somewhere finite, so has compact level
sets, by coercivity. Thus it has a global minimizer d (x, ) (unique, by strict convexity),
which must satisfy the inequality

h(c(x) + Ve@d(x, ) < h(ct) + Ve@d() < yplxl®

The remainder of the argument proceeds as before. O

We elaborate on Theorem 4.5(b) by giving a simple example of a function prox-
regular at ¢(x) such that for sequences x, — x and u, — oo that satisfy neither
prlx, — %[> = 0nor h(c(x,)) — h(c(X)), there exists a sequence of global mini-
mizers d, := d(x,, u,) of the subproblem (1.3) for which (4.4) is not satisfied. For a
scalar x, take c(x) = x and

h(c):[—c (c <0)
1+c¢ (c>0).

The unique critical point is clearly X = 0 with ¢(xX) = 0 and h(c(x)) = 0, and this
problem satisfies the assumptions of the theorem. Consider x > 0, for which the
subproblem (1.3) is
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, 3 oo |-x—d+5d* (x+d=<0)

mn hep(d) = hx +d) + 2d |14 x+d+4a* x+d>0).

When pu,x, € (0, 1], then d, = —x, is the only local minimizer of Ay, ,,. When
urxr > 1, the situation is more interesting. The value d, = —pu, I minimizes the
“positive” branch of iy, ,,., with function value 1+ x, — (2,ur)_l , and there is a second
local minimizer at d, = —x,, with function value (u, /2)x,2. (In both cases, these
minimizers satisfy the estimate |d.| = O(|x, — x|) proved in part (a).) Comparison of
the function values show that in fact the global minimum is achieved at the former point
(dy = —p; ) whenx, > ur_1+~/§u;]/2.lfthis step is taken, we have x, +d, > 0,s0
the new iterate remains on the upper branch of 4. For sequences x, = /,Lr_l + 2;1;1/ 2
and u, — oo, we thus have for the global minimizer d, = —u,; ! of hy, ,, that
h(c(x;) + Ve(xy)dy) > 1 for all r, while h(c(x)) = 0, so that (4.4) does not hold.
The alternative sequence of local minimizers d, = —x, of does, however, satisfy the
limit (4.4).

4.3 Restoring feasibility

In the algorithmic framework to be discussed below, the basic iteration starts at a
current point x € " such that the function £ is finite at the vector c(x). We then
solve the proximal linearized subproblem (1.3) to obtain the step d = d(x, u) € N".
Under reasonable conditions we have shown that, for x near the critical point x, we
have d = O(|x — x|) and furthermore we know that the value of % at the vector
c(x) + Ve(x)d is close to the critical value h(c(x)).

The algorithmic idea is now to update the point x to a new point x 4+ d. When the
function & is Lipschitz, this update is motivated by the fact that, since the map c is C2,
we have, uniformly for x near the critical point x,

c(x +d) — (c(x) + Ve@)d) = 0(ld»)
and hence
h(c(x +d)) — h((c(x) + Ve)d)) = 0(d[).

However, if & is not Lipschitz, it may not be appropriate to update x to x + d: the
value h(c(x + d)) may even be infinite.

In order to take another step, we need somehow to restore the point x 4 d to
feasibility, or more generally to find a nearby point with objective value not much
worse than our linearized estimate i (c(x) + Vc(x)d). Depending on the form of the
function A, this may or may not be easy computationally. However, as we now discuss,
our fundamental transversality condition (4.3), guarantees that such a restoration is
always possible in theory. In the next section, we refer to this restoration process as
an “efficient projection.”
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Theorem 4.6 (Linear estimator improvement) Consider a map c: W' — N" that is
C? around the point X € K", and a lower semicontinuous function h: X" — R that
is finite at the vector ¢ = c(x). Assume that the transversality condition (4.3) holds.
Then there exist constants y and § > 0 such that, for any point x € Bgs(X) and any
step d € Bs(0) C R" for which |h(c(x) + Vc(x)d) — h(¢)| < 6, there exists a point
xT e N satisfying

it — @+ d)| <yldP and h(c(x™)) < h(c(x) + Ve)d) + yld|. (4.10)

Proof Define a C? map F: R x N — R x Rby F(x,t) = (c(x), t). Notice that
the epigraph epi % is a closed set containing the vector F (E, h(E)). Clearly we have

Null(VF()E, h(E))*) = Null(Ve()*) x {0}.
Recalling the relationship (6.5) between d°°h and epi & at ¢, we have
(7,0) € Nepin (¢, h(2)) & y € 9%°h(0).
Hence the transversality condition is equivalent to
Nepin (¢, h(@) N Null(VF()E, h(E))*) — (o).

We next apply Theorem 4.4 to deduce the existence of a constant k > 0 such that,
for all vectors (u, 1) near the vector (¢, 2(¢)) we have

dist((u, 1), F~'(epih)) < « dist(F (u, 1), epih).

Thus there exists a constant § > 0 such that, for any point x € Bs(x) and any step
d € N satistying |d| < 8 and |h(c(x) + Ve(x)d) — h(c)| < §, we have

dist((x +d, h(c(x) + Ve(x)d)), F~ ' (epi h))
<k dist(F(x +d, h(c(x) + Vc(x)d)), epih)
= ke dist((c(x + ), h(e(x) + Ve(x)d), epih)
<«le(x +d) — (c(x) + Ve(x)d)|,

since

(c(x) 4+ Vex)d, h(c(x) + Vc(x)d)) € epih.

Since the map ¢ is C2, by reducing 8 if necessary we can ensure the existence of a
constant y > 0 such that the right-hand side of the above chain of inequalities is
bounded above by y |d 12.
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We have therefore shown the existence of a vector (x*, 1) € F~!(epi h) satisfying
the inequalities |x+ — (x + d)| < y|d|? and |t — h(c(x) + Ve(x)d)| < y|d|?. Since
t = h(c(x™)), the result follows. ]

4.4 Uniqueness of the proximal step and convergence of multipliers

Our focus in this subsection is on uniqueness of the local solution of (1.3) near d = 0,
uniqueness of the corresponding multiplier vector, and on showing that the solution
d(x, n) of (1.3) has a strictly lower subproblem objective value than d = 0. For the
uniqueness results, we strengthen the transversality condition (4.3) to a constraint
qualification that we now introduce.

Throughout this subsection we assume that the function % is prox-regular at the
point ¢. Since prox-regular functions are subdifferentially regular, the subdifferential
dh(c) is a closed and convex set in N, and its recession cone is exactly the horizon
subdifferential 9°°h(c) (see [40, Corollary 8.11]). Denoting the subspace parallel to
the affine span of the subdifferential by par 94 (c), we deduce that 9°°h(c) C par dh(c).
Hence the “constraint qualification” that we next consider, namely

par 34 (¢) N Null(Ve(x)*) = {0}, (4.11)
implies the transversality condition (4.3).
Condition (4.11) is related to the linear independence constraint qualification in

nonlinear programming. To illustrate, consider again the case of Sect. 2.3, where the
function # is finite and polyhedral:

h(c) = max{(h;, c) + pi}

for given vectors ; € R™ and scalars B;. Then, as we noted, dh(c) = conv{h; : i € I},
where [ is the set of active indices, so

par 8h(é) = {inhi > hi= o}.

iel iel

Thus condition (4.11) states
Vex)*h; | |0 _
in[ X }_[0]©inhi_o. 4.12)
iel iel

By contrast, the linear independence constraint qualification for the corresponding
nonlinear program (2.5) at the point ()E, —h(E)) is

x)*h; . F
ZM[VC(/;) :|:|:8:| A=0 (iel),
iel
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which is a stronger assumption than condition (4.12).

We now prove a straightforward technical result that addresses two issues: existence
and boundedness of multipliers for the proximal subproblem (1.3), and the convergence
of these multipliers to a unique multiplier that satisfies criticality conditions for (1.1),
when the constraint qualification (4.11) is satisfied. The argument is routine but, as
usual, it simplifies considerably in the case of & locally Lipschitz (or in particular
convex and continuous) around the point ¢, since then the horizon subdifferential
9°°h is identically {0} near c.

Lemma 4.7 Consider a function h: W™ — R and a map c: X" — R™. Suppose that
c is C* around the point X € W', that h is prox-regular at the point ¢ = c(x), and that
the composite function h o c is critical at X.

When the transversality condition (4.3) holds, then for any sequences u, > 0 and
Xy — X such that p|x, — x| — 0, and any sequence of critical points d, € X" for
the corresponding proximal linearized subproblems (1.3) satisfying the conditions

d, = O(|x, — x|) and h(c(xr) + Vc(xr)dr) — h(c),
there exists a bounded sequence of vectors v, € W" that satisfy

0= Vex) v, + urdy,, (4.13a)
v € 8h(c(xr) + Vc(x,)dr). (4.13b)

When the stronger constraint qualification (4.11) holds, in place of (4.3), the set of
multipliers v € N solving the criticality condition (1.4), namely

dh(G) N Null(Ve(®)*) (4.14)

is in fact a singleton {v}. Furthermore, any sequence of multipliers {v,} satisfying the
conditions above converges to v.

Proof We first assume (4.3), and claim that
8°°h(c(xr) + Vc(xr)dr) N Null(Ve(x,)*) = {0} (4.15)

for all large r. Indeed, if this property should fail, then for infinitely many r there
would exist a unit vector v, lying in the intersection on the left-hand side, and any
accumulation point of these unit vectors must lie in the set

9°°h(C) N Null(Ve(x)™), (4.16)

by outer semicontinuity of the set-valued mapping 9°°/ at the point ¢ [40, Proposi-
tion 8.7], contradicting the transversality condition (4.3). As a consequence, we can
apply the chain rule [40, Theorem 10.6] to deduce the existence of vectors v, € N”
satisfying (4.13). This sequence must be bounded, since otherwise, after taking a
subsequence, we could suppose |v,| — oo and then any accumulation point of the
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unit vectors |v,|~'v, would lie in the set (4.16), again contradicting the transversality
condition. The first claim of the theorem is proved.

For the remaining claims, note first that the chain rule implies that the set (4.14) is
nonempty. The constraint qualification (4.11) then implies that this set is a singleton
{v}. Using boundedness of {v,}, and the fact that u,d, — 0, we have by taking
limits in (4.13) that any accumulation point of {v,} lies in (4.14) (by h-attentive outer
semicontinuity of d/4 at ¢), and therefore v, — v. O

Using Theorem 4.5, we show that the local minimizers of Ay, ,, satisfy the desired
properties, and in addition give a strict improvement over O in the subproblem (1.3).

Lemma 4.8 Consider a function h: " — Rt and a map ¢: K" — R™. Suppose that
c is C* around the point X € W', that h is prox-regular at the point ¢ = c¢(x), that
the composite function h o c is critical at X, and that the transversality condition (4.3)
holds. Then there is a constant i1 > 0 with the following property. If 1, > 1 and
X, — X are sequences such that ju.|x, — x| — 0, then for all r sufficiently large, we
have the following.

(a) There is a local minimizer d, of hy, ,, such that
dr = O(|x, — x|) and h(c(x;) + Ve(xp)dr) — h(C). (4.17)
(b) If0 ¢ d(h oc)(x;) forall r, then d» # 0 and
hy, . (dr) < By, g0, (0) (4.18)

for all r sufficiently large.

Proof Part (a) follows from parts (a) and (b) of Theorem 4.5 when we choose [ as in
that theorem and set d, = d(x,, it,).

For part (b), we have from (4.17) and Lemma 4.7 that there exists v, satisfying
(4.13). If we were to have d, = 0, these conditions would reduce to Ve(x,)*v, = 0
and v, € dh(c(x,)), so that 0 € d(h o ¢)(x,), by subdifferential regularity of h.
Hence we must have d, # 0. To prove (4.18), suppose for contradiction that there
are sequences [i,, X, with the assumed properties such that this inequality does not
hold for all r sufficiently large. Without losing generality, we can assume that (4.18)
fails to hold for every r. By taking limits in (4.13) and from boundedness of {v,}, we
can assume without loss of generality that v, — v, for some v with Vc(x)*v = 0,
v € dh(c), where we have used h-attentive outer semicontinuity of d/(-) to obtain the
latter inclusion. Let p be the constant from Definition 1.1 associated with ¢ and v, and
choose [t such that & > p||Ve(x) ||2. By prox-regularity, we have

h(c(xr)) > h(c(x;) + Velxr)dr) + (v, =Ve(xp)dy) — §|vc(xr)dr|2
= h(elsr) + Ve@d) + urld P = 2 Ve d, by (4.13a)

r = ol Ve@)|?

5 \d, |

> h(c(xy) + Ve()d,) + %wz + £
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wr — plIVe(x)|?
2

= hy, ., (dy) + \d,|? by (1.3)

> hxr,ur (dy),

where the final inequality holds because of our choice of ji. Since hy, ,, (0) =
h (c(xr)), we have a contradiction, and the proof is complete. O

Returning to the assumptions of Theorem 4.5, but now with the constraint qualifi-
cation (4.11) replacing the weaker transversality condition (4.3), we can derive local
uniqueness results about critical points for the proximal linearized subproblem. When
the outer function % is convex, uniqueness is obvious, since then the proximal lin-
earized objective A,  is strictly convex for any & > 0. For lower C? functions, the
argument is much the same: such functions have the form g — «| - |2, locally, for some
continuous convex function g, so again h, , is locally strictly convex for large p. For
general prox-regular functions, the argument requires slightly more care.

Theorem 4.9 (Unique step) Consider a function h: R" — R and a map c: R" —
W™, Suppose that c is C* around the point X € W, that h is prox-regular at the point
¢ = c¢(x), and that the composite function hoc is critical at X. Suppose further that the
constraint qualification (4.11) holds. Then there exists (i > 0 such that the following
properties hold. Given any sequence {i;} with [, > [ for all r and any sequence
X, — X such that 1. |x, — x| — O, there exists a sequence of local minimizers d, of
hy, u, and a corresponding sequence of multipliers v, with the following properties:

0 € dhy, i, (dr), dr = O(lx, = %), and h(c(x,) + Ve(x,)dy) — h(@),
(4.19)

asr — oo, and satisfying (4.13), with v, — v, where v is the unique vector that solves
the criticality condition (1.4). Moreover, d, is uniquely defined for all r sufficiently
large.

In the case of a convex, lower semicontinuous function h : X" — (—o0, +00], the
result holds with i = 0.

Proof Existence of sequences {d,} and {v,} with the claimed properties follows from
Theorem 4.5 and Lemma 4.7, where we select 1 in the same way as in Theorem 4.5.
We need only prove the claim about uniqueness of the vectors d,, and the final claim
about the special case of & convex and lower semicontinuous.

We first show the uniqueness of d, in the general case. Since the function / is
prox-regular at c(x), its subdifferential 9/ has a hypomonotone localization 7" around
the point (c(x), v) with constant p > 0 (see the “Appendix”). If the uniqueness claim
does not hold, we have by taking a subsequence if necessary that there is a sequence
x, — ¥ and distinct sequences of d! # d,2 in N" satisfying the conditions

0€dhy, ,,(d), d=0(x, —%) =0, and h(c(x,)+ Ve(x)d!) — h(c(X)),

asr — oo, fori = 1,2. Lemma 4.7 shows the existence of sequences of vectors
v, € N satisfying
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0= Vc(xr)*vi + pd’
v € dh(c(x,) + Ve(x,)dy),

for all large r, and furthermore v. — v for each i = 1, 2. Consequently, for all large
r we have

vi € T(c(xy) + Ve(xp)dl) fori = 1,2,

so that

r

2
—eld) = &2 = (o} = 02, Vo) (d) = d2)) = —p Vet (4 = d?)|
Since i > p||Ve(x)||?, we have the contradiction p||Ve(x)|? = wr > o >
plIVe(@)||* for all large r.
For the special case of & convex and lower semicontinuous, we have from Theo-
rem 4.5(c) that unique d, with the properties (4.19) exists, for u = 0. m]

4.5 Manifold identification

We next work toward the identification result. Consider a sequence of points {x,} in
9" converging to the critical point X of the composite function 4 o ¢, and let 1, be a
sequence of positive proximality parameters. Suppose now that the outer function &
is partly smooth at the point ¢ = c¢(x) € :" relative to some manifold M C %"™. Our
aim is to find conditions guaranteeing that the update to the point c(x,) predicted by
minimizing the proximal linearized objective h,, ,, lies on M: in other words,

c¢(xy) + Ve(xy)d, € M for all large r,

where d, is the unique small critical point of sy, ,, . We would furthermore like to
ensure that the “efficient projection” x ™ resulting from this prediction, guaranteed by
Theorem 4.6 (linear estimator improvement), satisfies c(x™) € M.

To illustrate, we return to our ongoing example from Sect. 2.3, the finite polyhedral
function (2.3). If I is the active index set corresponding to the point ¢, then it is easy
to check that / is partly smooth relative to the manifold

M ={c: (hi,c)+ Bi = (hj,c)+ Bjforalli, j € I}.

Our analysis requires one more assumption, in addition to those of Theorem 4.9.
The basic criticality condition (1.4) requires the existence of a multiplier vector:

0h(C) NNull(Ve(x)*) # 3.
We now strengthen this assumption slightly, to a “strict” criticality condition:

1i(85.(6)) N Null(Ve(R)*) # 4, (4.20)
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where ri denotes the relative interior of a convex set. The condition (4.20) is related to
the strict complementarity assumption in nonlinear programming. For finite polyhedral
h (2.3), since dh(c) = conv{h; : i € I}, we have

(0R@) = { D xihi : 2 =1, 2> 0.

iel iel

Hence, the strict criticality condition (4.20) becomes the existence of a vector A € Nied
satisfying

h>0 and D A [Vc(f)*h’} = [?] 4.21)

iel

The only change from the corresponding basic criticality condition (2.4) is that the
condition A > 0 has been strengthened to A > 0, corresponding exactly to the extra
requirement of strict complementarity in the nonlinear programming formulation (2.1).

Recall that the constraint qualification (4.11) implies the uniqueness of the mul-
tiplier vector v, by Lemma 4.7. Assuming in addition the strict criticality condition
(4.20), we then have

RS ri(8h(5)) N Null(Ve(x)™).
We now prove a trivial modification of [22, Theorem 5.3].

Theorem 4.10 Suppose the functionh: W" — N is partly smooth at the point ¢ € R™
relative to the manifold M C W™, and is prox-regular there. Consider a subgradient
v € ridh(C). Suppose the sequence {¢,} C RN™ satisfies ¢, — ¢ and h(¢,) — h(C).
Then ¢, € M for all large r if and only ifdist(l'), Bh(ér)) — 0.

Proof The proof proceeds exactly as in [22, Theorem 5.3], except that instead of
defining a function g : " x % — Rby g(c,r) =r,wesetg(c,r) =r—clv. 0O

We can now prove our main identification result.

Theorem 4.11 Consider a function h: W" — N, and a map c¢: N* — R that
is C* around the point X € W". Suppose that h is prox-regular at the point ¢ =
c(x), and partly smooth there relative to the manifold M. Suppose further that the
constraint qualification (4.11) and the strict criticality condition (4.20) both hold for
the composite function h o ¢ at x. Then there exist nonnegative constants [i and y
with the following property. Given any sequence {i,} with w, > [ for all r, and any
sequence x, — X such that p,|x, — x| — 0, the local minimizer d, of hy, ., defined
in Theorem 4.9 satisfies, for all large r, the condition

c(x,) + Ve(x,)d, € M, (4.22)
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and also the inequalities

Y — (5 +d)| < yld P and h(c(™) < h(c(x) + Ve)d,) + yld, I,
(4.23)

hold for some point x** with ¢(x}*V) € M.
In the special case when h : X" — (—o00, +00] is convex and lower semicontinu-
ous, the result holds with 1 = 0.

Proof Theorem4.9 impliesd, — 0,s0¢, = ¢(x,;)+Ve(x,)d, — ¢. The theorem also
shows h(¢,) — h(c), and that there exist multiplier vectors v, € 9h(¢,) satisfying
vy — U € 1i 0h(C). Since dist(v, dh(¢r)) < [v—v,| — 0, we can apply Theorem 4.10
to obtain property (4.22).

Let us now define a function & xq: W™ — 9, agreeing with 4 on the manifold
M and taking the value +oo elsewhere. By partial smoothness, % 4 is the sum of a
smooth function and the indicator function of M, and hence 9®h((¢) = Na4(C).
Partial smoothness also implies par(ah(E)) = Nq(c). We can therefore rewrite the
constraint qualification (4.11) in the form d°°h 4 (¢) N Null(Ve(x)*) = {0}. This
condition allows us to apply Theorem 4.6 (linear estimator improvement), with the
function s a4 replacing the function 4, to deduce the existence of the point x*V, as
required. O

5 A proximal descent algorithm

We now describe Algorithm ProxDescent, a simple first-order algorithm that manip-
ulates the proximality parameter p in (1.3) to achieve a “sufficient decrease” in h
at each iteration. (This algorithm is shown in the figure below as Algorithm 2.) We
follow our description with results concerning the global convergence behavior of this
method and its ability to identify the manifold M discussed in Sect. 4.5.

A few remarks about Algorithm ProxDescent are in order. First, we are not specific
about the derivation of x™ from x; + d, but we assume that the “efficient projection”
technique that is the basis of Theorem 4.6 is used when possible. Lemma 4.8 indicates
that for u sufficiently large and x near a critical point x of 4 o ¢, it is indeed possible
to find a local solution d of (1.3) which satisfies iy ,,(d) < hy, ,(0) as required by the
algorithm, and which also satisfies the conditions of Theorem 4.6. Lemma 5.2 below
shows further that the new point xT satisfies the acceptance tests in the algorithm.
However, Lemma 5.2 is more general in that it also gives conditions for acceptance
of the step when x; is not in a neighborhood of a critical point of 4 o c.

Second, we note that the framework allows x to be improved further. For example,
we could use higher-order derivatives of ¢ to take a further step along the manifold
of h identified by the subproblem (1.3) (analogous to an “EQP step” in nonlinear
programming) and reset x* accordingly if this step produces a reduction in % o c. We
discuss this point further at the end of the section.

We start our convergence analysis with a technical result showing that in the neigh-
borhood of a non-critical point x, and for bounded p, the steps d do not become too
short.
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Algorithm 2 ProxDescent

Define constants 7 > 1,0 € (0, 1), and ppin > 0;
Choose xg € R, 1o > mins
Set <= po;
fork=0,1,2,... do
Set accept < false;
while not accept do
if d = 0 is a local minimizer of (1.3) then
Terminate with X = xi;
end if
Find a local minimizer d of (1.3) with x = xy, that is

min Ay (d) = h(e(x) + Ve(s)d) + %|d|2,

such that iy, 4 (d) < hyy,, 1 (0);
if no such d exists then
W< T
else
Derive x T from x; + d (by an efficient projection and/or other enhancements);
if h(c(xg)) — h(c(x™)) > o [A(c(xk)) — h(c(xp) + Ve@xp)d) ]
and [x+ — (x¢ + d)| < %|d| then
Xeg1 < xT
dy < d;
Hi < 14
M < max(mins 4/T);
accept < true;
else
Mo T
end if
end if
end while
end for

Lemma 5.1 Consider a function h: R — % and a map c: W* — K™, Let x be
such that: ¢ is C' near X; h is finite at the point ¢ = c(x) and subdifferentially
regular there; the transversality condition (4.3) holds; but the criticality condition
(1.4) is not satisfied. Then there exists a quantity € > 0 such that for any sequence
X, —> X with h(c(xr)) — h(c), and any sequence {1, } with i, > [min, any sequence
of critical points d, of hy, ,, satisfying hy, ,, (d;) < hy, ., (0) must also satisfy
liminf, u,|d,| > €.

Proof 1If the result were not true, there would exist sequences x,, 4, and d, as above
except that p,d, — 0. We would then have 0 < |d,| < u,|dy|/tmin — 0. Noting
that h(c(x;) + Ve(x)d,) — h(c) (using lower semicontinuity and the fact that the
left-hand side is dominated by & (c(x,)), which converges to h(c)), we have that

3%h(c(x,) + Ve(x)d,) N Null(Ve(x,)*) = {0},
for all r sufficiently large. (If this were not true, we could use an A-attentive outer

semicontinuity argument based on [40, Proposition 8.7] to deduce that 3°°A(c) N
Null(Ve(x)*) contains a nonzero vector, thus violating the transversality condition
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(4.3).) Hence, we can apply the chain rule and deduce that there are multiplier vectors
v, such that (4.13) is satisfied, that is,

0= Velx,)* v + prd,,
v, € Bh(c(xr) + Vc(xr)dr),

for all sufficiently large r. If the sequence {v,} is unbounded, we can assume without
loss of generality that |v.| — oo. Any accumulation point of the sequence v, /|v;|
would be a unit vector in the set 9°°h(c) N Null(Vc(x)*), contradicting (4.3). Hence,
the sequence {v,} is bounded, so by taking limits in the conditions above and using
urdr, — 0 and outer semicontinuity of d/(c) at ¢, we can identify a vector v such that
v € dh(c) N Null(Ve(x)*). Using the chain rule and subdifferential regularity, this
contradicts non-criticality of x. O

The next result makes use of the efficient projection mechanism of Theorem 4.6.
When the conditions of this theorem are satisfied, we show that Algorithm ProxDescent
can perform the projection to obtain the point x:’ in such a way that (4.10) is satisfied.
Lemma 5.2 Consider a function h: W" — % and a map c¢: R — N that is C*
around a point x € N*. Assume that h lower semicontinuous and finite at ¢ = c(x)
and that the transversality condition (4.3) holds at x and c. Then there exist constants

Q> 0and$ > 0 with the following property: For any x € B3(x), d € B;(0), and
W > [L such that

hepu(d) < hye 1 (0),  |h(c(x) + Ve(x)d) — h(c(®))] < 8, (5.1)
there is a point x+ € N such that

h(c(x)) — h(c(x+)) > O’[h (c(x)) — h(c(x) + Vc(x)d)], (5.2a)

. 1
it = ()] < S ldl. (5.2b)

Proof Define § and y as in Theorem 4.6 and set § = min (8, 1/ (2)/)). By applying
Theorem 4.6, we obtain a point x* for which [xT — (x + d)| < y|d|* < %|d| (thus
satisfying (5.2b)) and & (c(x+)) < h(c(x) + Ve(x)d) + y|d|*. Also note that because
of hy ;i (d) < hy ;,(0), we have

he) + Ve@d) + Tl < h(cw)
and hence

ld|* < % [A(c(x)) = h(c(x) + Ve@)d)] .
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We therefore have

h(c(x)) — h(c(x+)) > h(c(x)) — h(c(x) + Vex)d) — y|d|2

> [A(c(x)) = h(c(x) + Ve@)d)| (1 - v .
n

By choosing /i large enough that 1 — 2y /i > o, we obtain (5.2a). O
We also need the following elementary lemma.

Lemma 5.3 For any constants t > 1 and p > 0 and any positive integer t, we have

t t
min { Za?ri : Zcxi >p, a€ 9{;} > p*(r = 1).
i=1

i=1

Proof By scaling, we can suppose p = 1. Clearly the optimal solution of this problem
must lie on the hyperplane H = {o : >, o; = 1}. The objective function is convex,
and its gradient at the point @ € H defined by

1—i —i
_ T -1
o = ﬁ >0
is easily checked to be orthogonal to H. Hence « is optimal, and the corresponding
optimal value is easily checked to be strictly larger than T — 1. O

For the main convergence result, we make the additional assumption that / can be
bounded below, globally, by a (concave) quadratic function, that is,

h(c) = ho — qolc)* forallc € W™, (5.3)

for some scalars kg and gg > 0. Such functions are called prox-bounded [40]. This
assumption holds for all 4 considered in the examples of Sect. 2. The other assumptions
made on £, ¢, and X in the theorem below allow us to apply both Lemmas 5.1 and 5.2.

Theorem 5.4 (Global convergence) Consider a function h: W" — R and a map
c: N — N Suppose that the sequence (xk, h(c(xk))) generated by Algorithm
ProxDescent has an accumulation point at (JE, h(E)), where ¢ := c(x). Suppose that
c is C* near %, that h is subdifferentially regular (thus lower semicontinuous) at ¢
and is prox-bounded, and that the transversality condition (4.3) holds at x. Then the
criticality condition (1.4) is satisfied at X.

Proof Suppose for contradiction that ()E, h(E)) is an accumulation point but is not
critical. Since the sequence {h(c(x,))} generated by the algorithm is monotonically
decreasing, we have h (c (xr)) J h(c). By the acceptance test in the algorithm and the
definition of A, in (1.3), we have that

h(e(rs) < h(c(x)) = o[h(c(x)) = h(c(x) + Ve(xr)dy)]
< h(c() —o o, . (5.4)
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We thus have

Mz

h(c(x0)) —h(c(x)) = > h(c(xr)) — h(c(xr41))

o
prldy|* > umm >l I,
r=1

‘
Il
S

A%
| Q
1

which implies that d, — 0. Further, we have that

[ (c(xr) + Ve(xr)dy) — h(C)]
< [1(cer) = hle@) + Ve@ndy)] + [A(c(x) — h@)]
< o ! [h (c(xr)) — h(c(xr+1))] + [h(c(xr)) — h(E)] — 0. (5.5)

Because x is an accumulation point, we can define a subsequence of indices rj, j =
0,1,2,... such that lim;_, o x,; = X. The corresponding sequence of regularization
parameters u,; must be unbounded, since Lemma 5.1 indicates thatlim inf ; ., |dy;| >
€ > 0. Defining /i and § as in Lemma 5.2, we can assume without loss of generality

that Mrj > Tt and Mrjyy > Hr; for all j. Moreover, since Xr; = x and d, — 0, and
using (5.5), we can assume that

Xr; € Bg/z(i), forj=0,1,2,..., (5.6a)

dr € B3(0), for allr > ro, (5.6b)

|h(c(x,) + Ve(x,)dy) — h(©)] <6, for allr > r. (5.6¢)
Suppose first that there are infinitely many r;, j = 0, 1,2, ..., such that u is
increased in an inner iteration of iteration r ;. Without loss of generality, we can assume
that this behavior happens for all r;, j = 0,1,2,.... We consider reasons why the

previously tried value ,; /T would have been rejected. The first possible reason for
rejection is that (1.3) does not have a local minimizer for x = x,; and p = p,; /7.
Because of (5.3), we have

,U«rj

h(cCer)) + Verd) + S 2d )

ur,

> ho — qo|c(xrj) + Vc(x,j)d\ +— |d|2

Iir)

> [0 = 2q0leC) P + [ 52

- 2qo|Vc(xr,>|2] dl?
2t :

- o B
> ho + (52 — o) 1d1*,

where the last inequality follows from (5.6a) and smoothness of c¢. We conclude
that hxrj, e /7 has bounded level sets for all u,; sufficiently large, thus by lower
semicontinuity of £, it attains a minimizer [40, Theorem 1.9]. Note that d = 0 is not
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the minimizer (otherwise, ProxDescent would have terminated), so at least one of the
local minimizers that exists has & X ot /T d)y<h X ot /T 0),

We can thus assume that a local minimizer dAr : is found at x = Xr; and u = Hr; /T.
Iflim; d,, = 0, we have from (c(x,,) + Vc(xy,)dy,) < h(c(xy))) | h(c(%)), the fact
that Xpj = X, and lower semicontinuity of 4 that h(c(xrj) + Vc(xrj)ﬁrj) — h(c(x)).
Thus, all conditions of Lemma 5.2 are satisfied, by x = Xrs d = c?rj, n= ,erj/l', SO
it follows from this lemma that a step would have been taken and 1 would not have
been increased above Hr /7, a contradiction. Hence, we must have d,_,. - 0. We can

therefore identify a constant € > 0 and assume without loss that |c?rj| > ¢ for all
j=0,1,2,....Since h"'j’“'_i/f(d’f) < hxrj,ur_,-/r(o)’ we have

H(eCy) + Vedr)) < M) = 521, . (5.7)

Since p,; 1 oo, this inequality contradicts prox-boundedness for all j sufficiently
large. To see this, we have from (5.3) and |c?,_/. | > € > 0 (for large j) that

~ ~ |2
her) + Veb)d) = ho = go [e(xr)) + Ve, )d),

> [0 = 20l ] = [2001Ve 1] 1, 1

> hetar) - 52

> h(c(x) + Vex))dy)),

\d, i |> forall j sufficiently large

giving a contradiction. We conclude that the case of 3,_ ; = Oalso cannot hold, so there
are not infinitely many r;, j =0, 1, 2, ... such that p is increased during an internal
iteration of major iteration r;. In fact, we can claim, with no loss of generality, that
w is not increased in iteration 7, so that the first value of u tried in each iteration r,
j=0,1,2,... is accepted.

Letk;, j = 1,2, ... denote the latest iteration prior to iteration r; for which u is
increased in an internal iteration. Since Krj > [rj_s the index k; is well defined, and
from the discussion above, we have r;_; < k; < r;. Since no increases are performed
internally during iterations k; + 1, ..., 7}, the value u at each of these steps is the
first value tried, that is,

tla < Mrj = T_llurj—l = t_zl'Lrj—2 == tkj_rjﬂkf (58)

We show first that
—x, — 0. (5.9)

Xk I

J

If this limit did not hold, there would be a value § > 0 such that lxk; — x| = $ for
infinitely many j—without loss of generality for all j. From the acceptance criteria
in Algorithm ProxDescent, we have
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3
[Xkq1 — Xkl < [Xkp1 — Gk +di)| + Ndi| < Eldkl, (5.10)
and so
rj—l rj—l
§ <l —xigl = D Pt — il < 5 > ldid.
k:kj k:kj

To bound the decrease in objective function over the steps from xi; to x;, we have
from (5.4) and (5.8) that

r_,'—l

h(cGi) = h(c(e) = D () = b))

k=k;

T

o o -
> = 2kl = Sy > .
k k=k

1 rj—l

1
=

J

To obtain a lower bound on the final summation, we apply Lemma 5.3 with p = 25/3
(from (5.10)) and t = r; — k; > 1 to obtain

h(cCa,)) = h(c(x,))) = %ur,. (28/3)*(x — 1) = grﬁgz(r —1)>0,

where we have used u,; > © . This inequality contradicts i (c(x,)) | h(c(x)), so we
conclude that (5.9) holds. It thus follows from the definition of {r;} that

lim X, = lim X+ lim (xkj —xrj) = X. (5.11)
Jj—o00 j—o0 j—o00
An identical argument to the one we used to show that p cannot be increased at
iteration r; can now be applied to the sequence {k;}, j = 0, 1,2, ..., to show that
the second-to-last value p; /7 tried at iteration k; would be been accepted for all j
sufficiently large. This contradicts the definition of k ;. Summarizing these arguments,
we conclude that the sequence {r;} does not exist, so the desired contradiction is
obtained, and x must be a critical point. O

We note that this global convergence result (stationarity of accumulation points) is
typical of algorithms for nonlinear programming and composite nonsmooth optimiza-
tion; see for example [18, Theorem 2.1], [52, Theorem 3.1].

To illustrate the idea of identification, we state a simple manifold identification
result for the case when the function / is convex and finite.

Theorem 5.5 Consider a function h : W" — R, a map ¢ : N — RN, and a point
X € W such that ¢ is C? near % and that the constraint qualification (4.11) and
the strict criticality condition (4.20) both hold for the composite function h o ¢ at X.
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Suppose too that h is convex, and continuous on dom h near ¢ := c(x). Suppose in
addition that h is partly smooth at ¢ relative to the manifold M. Then if Algorithm
ProxDescent generates a sequence x, — X, we have that c(x,) + Vec(x,)d, € M for
all r sufficiently large.

Proof Note that £, ¢, and X satisfy the assumptions of Theorem 4.11, with & = 0. To
apply Theorem 4.11 and thus prove the result, we need to show only that i, |x, — x| —
0. In fact, we show that {u,} is bounded, so that this estimate is satisfied trivially.

Suppose for contradiction that {u,} is unbounded, so without loss of generality we
can choose an infinite subsequence {r;};—o,1,2,... with the following properties:

pr, 100, (5.122)

lim x,, = x, (5.12b)
Jj—o00

w was increased at an internal iteration of iterationr;. (5.12¢)

Similarly to the proof of Theorem 5.4, we consider the reasons why the value /7
was rejected as a possible value for u at iteration r;. Let (2,_ ; be the value of d obtained
by solving (1.3) with x = x; and u = p,; /7. If limjﬁooc?rj = 0, we have from
(5.12a) and (5.12b) and continuity of £ that the conditions of Lemma 5.2 are satisfied
by x =x,,,d =d,;, and u = p,; /7, for all j sufficiently large. This lemma implies
that ., : /T would have been accepted at iteration 7 ;, a contradiction. We must therefore
have c?r_ fisd 0, so may as well assume that we can identify € > 0 such that |d, ; | > € for
all j sufficiently large. Since hxrj, e/ (c?rj) < hx,/., ) /7(0), inequality (5.7) holds.
The assumptions on & imply that 4 is globally bounded below by a linear function
(the supporting hyperplane at c¢(x), for example), so as in the proof of Theorem 5.4,
inequality (5.7) also leads to a contradiction. We conclude that {x,} is bounded, as
claimed. O

To enhance the step d obtained from (1.3), we might try to incorporate second-order
information inherent in the structure of the subdifferential 0/ at the new value of ¢
predicted by the linearized subproblem. Knowledge of the subdifferential ah(c (x) +
Vc(x)d) allows us in principle to compute the tangent space to M. We could then try
to “track” M using second-order information, since both the map ¢ and the restriction
of the function 4 to M are C2.

6 Computational results

We present results for Algorithm ProxDescent applied to three problems drawn from
the examples of Sect. 2. Our results are far from exhaustive; the wide range of appli-
cations of our framework make a comprehensive study impossible. Moreover, the
algorithmic framework that we present and analyze is of a bare-bones nature. Signifi-
cant improvements in efficiency could be gained by enhancing it in various ways (for
example by making the strategy to increase and decrease © more adaptive) and by
customizing it to the various applications. Our goal here is to show that even the basic
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ProxDescent algorithm gives good performance on a diverse set of applications. Two
of our applications are regularized linear least-squares problems, one with a nonconvex
regularizer. The other is a nonsmooth penalty function from a nonlinear programming
application in power systems.

We start with the following £ -regularized least-squares problem:

!
min | Ax = bII3 + vilxl1, (©6.1)

where v > 0 is a regularization parameter. This problem has been widely studied in
recent years in the context of compressed sensing [9] (where m < n) and LASSO
[47] (where typically m > n). As mentioned earlier, Algorithm ProxDescent applied
to this problem is closely related to the SpaRSA algorithm for compressed sensing;
we refer to [51] for more detailed numerical testing.

We use ProxDescent to solve a compressed sensing signal recovery problem in
which 51 components of a n = 4096-dimensional vector ¥ were chosen to have
nonzero values, and 256 random linear observations Ax were made, where each entry
of A is drawn i.i.d. from a normal distribution with mean zero and standard deviation
1/(2n). Random normal noise of mean 0 and standard deviation 10~*/(2n) is added
to each observation, to yield the vector  in (6.1). The nonzero values of X have a wide
range of magnitudes. We choose the regularization parameter v to be .02[| A7 b||no,
which gives good recovery accuracy, and use x = 0 as the starting point. For the
parameters in ProxDescent, we used t = 1.25, 0 = .01, and ppin = 10~4. Termina-
tion was declared when the relative change in function value between two successive
iterations dropped below 10™*. (We note that because of the sufficient decrease con-
dition in ProxDescent, this quantity dominates a multiple of the first-order predicted
decrease in /i, which quantity is zero at a stationary point.)

Results are shown in Fig. 1. ProxDescent runs for 92 iterations before declaring
convergence. The top subfigure illustrates the solution x (with nonzero components
shown as vertical bars) and the recovered solution x* (indicated by circles), which has
25 nonzero components. Note that x* appears to have captured all larger-magnitude
components of X accurately. The middle figure plots log of objective function value
against iteration number, showing apparent linear convergence. The bottom plot shows
the log of 1y plotted against iteration number k. This value shows a slow downward
trend and is not constrained by the minimum value pmip.

Consider now the linear least-squares problem with a component-wise MCP regu-
larizer ¢ (-) defined in (2.14):

1 S
min [ Ax —bl3 +v > p(x), (6.2)

i=1

where v > 0 is again the regularization parameter. In replacing the regularizer || - ||
of (6.1) with the nonconvex regularizer of (6.2), we reduce bias in the solution at the
cost of introducing nonconvexity and thus the possibility of local minima.

To test ProxDescent on this problem, we used a different random instance of the
same problem as in (6.1), with the same parameter settings. We define the parameters
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Fig. 1 Results for formulation (6.1). Top figure shows spikes in true signal (bars) and recovered spikes
(circles), showing accurate recovery of the true signal. Middle figure shows the function values at each
iteration, while the bottom figure shows the values of ju at each iteration k

of the MCP regularizer (2.14)tobe A = 1 anda = ||X|o0/3. These choices ensure that
the MCP function has similar slope to || - ||| near zero and that it achieves its maximum
value of aA? /2 for the larger spikes. Results are shown in Fig. 2, using the same format
as Fig. 1 for the subfigures. Despite the nonconvexity, ProxDescent appears to have
no trouble finding the global minimum of (6.2), and in a similar number of iterations
as for (6.1) (84, in this particular instance). In fact, a close comparison of the top
subfigures in Figs. 1 and 2 indicates that the recovered spikes in Fig. 1 have slightly
lower magnitudes in general than the true spikes, an effect that is not present in Fig. 2.
This effect is subtle for the choice of v used here (detectable only in high-precision
versions of the plots), but it illustrates nicely the unbiasedness property of the MCP
regularizer. Once again, we see a faint downward trend in the value of py, and a
convergence rate that is clearly linear, until the solution is identified to high accuracy
at about iteration 80.
Finally, we consider the following nonlinear optimization problem:

min pTx subjectto c(x) =0, x <x <X, (6.3)

where ¢ : " — N7 is a smooth nonlinear vector function. A nonsmooth penalty
formulation of this problem, stated in a form consistent with (1.1), is as follows:

min p7x + vllc() 1 + I3 (%), (6.4)

where the indicator function Ij, )(x) takes the value O if the bound constraints
x < x < X are satisfied, and co otherwise. This problem was considered in [26],
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Fig. 2 Results for formulation (6.2). Top figure shows spikes in true signal (bars) and recovered spikes
(circles), showing accurate recovery of the true signal. Middle figure shows the function values at each
iteration, while the bottom figure shows the values of ju at each iteration k

where a sequential £;-linear programming algorithm was proposed to solve it. When
ProxDescent is applied to (6.4), the only essential difference between it and the algo-
rithm of [26] is that the latter uses an £, (“box-shaped”) trust region on the step d in
its subproblem, in place of the quadratic prox-term (1 /2)|d |2 of (1.3), which is equiv-
alent to an £;-norm (circular) trust region. (In fact, the code used to obtain numerical
results in [26] was easily modified to produce the results shown here.)

We use ProxDescent on the framework (6.4) to solve two problems from [26],
arising from the restoration of stable operation of a power grid following a disrup-
tion, such as loss of a transmission line. In this application, the variables x represent
voltage phasors at each node of the grid and various slacks in the formulation, while
c(x) is derived from the (nonlinear) model of AC power flow. The bounds on x rep-
resent acceptable deviations of voltage magnitude from 1, and acceptable values of
the amount of load to be shed from the nodes of the grid. The first problem is of a
type that commonly arises in the power grid application, where the number of con-
straints active at the solution of (6.3) equals the number of variables, so that methods
that use linearization of the constraints (including ProxDescent and the algorithm of
[26]) reduce to Newton’s method on the system of nonlinear equations represented
by the active constraints, and rapid convergence is observed once the active set has
been determined correctly. In the second problem, the number of active constraints is
fewer than the number of variables, so rapid convergence cannot be expected from a
first-order method. Here, as in [26], convergence is considerably slower.

For both datasets, we set 7 = 1.5, 0 = 1073, and Mmin = 103 in ProxDescent,
and terminate when the relative change in objective falls below 10~>. Results for the
first problem are shown in Fig. 3. This problem has 143 variables and 143 active
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Fig. 3 Results for formulation (6.4), derived from a 57-bus power grid in which the number of active
constraints at the solution equals the number of variables. Top figure shows T xp plotted against iteration
k; middle figure show ||c(xy)|1; bottom figure shows iy

constraints at the solution. Convergence occurred in 26 iterations, with a total of 44
subproblems solved. In Fig. 3, we consider separately the contributions from the p’ x
term and the penalty term | c(x)|1. Both exhibit steady linear convergence to their
optimal values. Two subproblems are solved on most iterations, because we try to
decrease the value of p then increase it again when the smaller value fails to satisfy
the sufficient decrease test. Note that u stabilizes at .058 on later iterations. Less
than one second of execution time was required on a MacBook Pro (2 GHz Intel i7
with 8GB RAM), using Matlab, the MATPOWER package [55] for modeling and
solving power grid problems, and CPLEX. The number of major iterations required
was similar to the S€;LP algorithm described in [26]. We also coded a version of the
algorithm that attempts to determine the set of active constraints manually once the
active set appears to have settled down, solving a system of nonlinear equations based
on the KKT conditions and making small heuristic adjustments to the active set in
search of a stationary point. This version takes 21 iterations, and about half the run
time.

The second data set for (6.4) is derived from a 118-bus system, and has 262 variables,
and 260 constraints active at the solution. Convergence behavior is quite similar to
the first case, featuring Q-linear convergence at a rate of about .5 for the constraint
violation measure ||c(xg)||1. ik stabilizes at the same value .058 as for the first data
set, and convergence is declared after 21 iterations, with 34 subproblems solved, in
about .6 seconds of CPU time (Fig. 4). An active-set version of the approach requires
only 11 iterations and about .18 seconds of CPU time.
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Fig. 4 Results for formulation (6.4), derived from a 118-bus power grid in which the number of active
constraints at the solution is smaller than the number of variables. Top figure shows pTxk plotted against
iteration k; middle figure show ||c(xy)| 1; bottom figure shows iy
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Appendix

The basic building block for variational analysis (see Rockafellar and Wets [40] or
Mordukhovich [35]) is the normal cone to a (locally) closed set S at a point s € S,
denoted by Ns(s). It consists of all normal vectors: limits of sequences of vectors of
the form A(u — v) for points u, v € RW" approaching s such that v is a closest point to
u in S, and scalars A > 0. On the other hand, fangent vectors are limits of sequences
of vectors of the form A(u — s) for points u € S approaching s and scalars A > 0.
The set S is Clarke regular at s when the inner product of any normal vector with any
tangent vector is always nonpositive. Closed convex sets and smooth manifolds are
everywhere Clarke regular.
The epigraph of a function A : "™ — N is the set

epih ={(c,r) e W" xRN :r > h(c)}.
If the value of / is finite at some point ¢ € R, then £ is lower semicontinuous nearby
if and only if its epigraph is locally closed around the point (E, h(E)). Henceforth we
focus on that case.

The subdifferential of h at ¢ is the set

@) = {v e R : (v, —1) € Nepin (@ h()}
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and the horizon subdifferential is
O°h(C) = {v efN": (v,0) € Nepih(E, h(E))} (6.5)

(see [40, Theorem 8.9]). The function 4 is subdifferentially regular at ¢ if its epigraph is
Clarke regular at (E, h(E)) (as holds in particular if 4 is convex lower semicontinuous,
or smooth). Subdifferential regularity implies that d4(c) is a closed and convex set
in N, and its recession cone is exactly 3°°h(¢) (see [40, Corollary 8.11]). In the
case when £ is locally Lipschitz, it is almost everywhere differentiable: % is then
subdifferentially regular at ¢ if and only if its directional derivative for every direction
d € N equals

lim sup (Vh(c), d),

c—>C

where the lim sup is taken over points ¢ where 4 is differentiable.

Consider a subgradient v € dh(c), and alocalization of the subdifferential mapping
dh around the point (¢, v), by which we mean a set-valued mapping 7': R" = Q"
defined by

T(y) = 0h(y) N Be(v) (ly — ¢l <€, |h(y) —h(0)| <€)
=10 (otherwise)

for some constant € > 0. The function & is prox-regular at ¢ for v if some such
localization is hypomonotone: that is, for some constant p > 0, we have

zeT(y) and 7 €eTO)= (2 —z,y —y) = —ply — y*.

This definition is equivalent to Definition 1.1 (with the same constant p) [40, Exam-
ple 12.28 and Theorem 13.36]. Prox-regularity at ¢ (for all subgradients v) implies
subdifferential regularity.

A general class of prox-regular functions common in engineering applications is
“lower C2” functions [40, Definition 10.29]. A function & : %" — R is lower C>
around a point ¢ € R™ if h has the local representation

h(c) = max flc, 1) forc € W nearc,
te

for some function f : N x T — N, where the space T is compact and the quantities
f(ce, 1), Ve f(c,t), and chcf(c, 1) all depend continuously on (c, ). All lower C>
functions are prox-regular [40, Proposition 13.3]. A simple equivalent property, useful
in theory though harder to check in practice, is that A has the form g — «| - |? around
the point ¢ for some continuous convex function g and some constant «.

The normal cone is crucial to the definition of another central variational-analytic
tool. Given a set-valued mapping F : P = N9 with closed graph,

gph F = {(u,v) : v e F(v)},
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at any point (i, v) € gph F, the coderivative D*F (ii|v) : RY = NP is defined by
w € D*F@ulv)(y) ¢ (w, —y) € Neph (i, D).

The coderivative generalizes the adjoint of the derivative of smooth vector function: for
smooth ¢ : " — N, the set-valued mapping x — F(x) := {c(x)} has coderivative
given by D*F (x|c(x))(y) = {Ve(x)*y} for all x € R and y € R™. As we see next,
coderivative calculations drive two of the arguments in Sect. 4.1.

Proof of Corollary 4.3 Corresponding to any linear map A: NP — N9, define a set-
valued mapping Fq: NP = NY by Fa(u) = Au — S. A coderivative calculation
shows, for vectors v € R?,

. _ [ta*} (v e NsO)
DTFA010)(v) = [ % (otherwise).
Hence, by assumption, the only vector v € R” satisfying 0 € D*F;(0[0)(v) is zero,
so by [40, Thm 9.43], the mapping F'; is metrically regular at zero for zero. Applying
Theorem 4.2 shows that there exist constants §, ¥ > 0 such that, if || A — A|| < § and
|v] < 8, then we have

dist(0, F '(—v)) < y dist( — v, Fa(0)),
or equivalently,
dist(0, A7(S — v)) < y dist (v, S).
Since 0 € S, the right-hand side is bounded above by y|v|, so the result follows. O

Proof of Theorem 4.4 'We simply need to check that the set-valued mapping G : i’ =
N9 defined by G(z) = F(z) — S is metrically regular at z for zero. Much the same
coderivative calculation as in the proof of Corollary 4.3 shows, for vectors v € R?,
the formula

x5 _ [{VF@*v} (v e Ns(@)
bD*GE0w) = @ (otherwise).
Hence, by assumption, the only vector v € R’ satisfying 0 € D*G(z]|0)(v) is zero,
so metric regularity follows by [40, Thm 9.43]. O

Alternative proof of Theorem 4.2 In the text we gave a short ad hoc proof of Theo-
rem 4.2. Here we present a more formal approach. Denote the space of linear maps
from NP to N? by L(NP, NY), and define a mapping g: L(NP, RT) x NP — N9
and a parametric mapping gg: NP — N7 by g(H,u) = gy(u) = Hu for maps
H € L(MP,9N9) and points u € RP. Using the notation of [14, Section 3], the Lip-
schitz constant /[g](0; i, 0), is by definition the infimum of the constants p for which
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the inequality
d(w, g (w)) < pd(u, g' (w)) (6.6)

holds for all triples (u, w, H) sufficiently near the triple (iz, 0, 0). Inequality (6.6) says
simply

lw— Hu| < plu — z| forallz € R’ satisfying Hz = w,
a property that holds providing p > ||H||. We deduce
I[g](0; u, 0) = 0. (6.7)

We can also consider F + g as a set-valued mapping from L(0R?, R7) x R to N9,
defined by (F + g)(H,u) = F(u) + Hu, and then the parametric mapping (F +
g H: NP = N is defined in the obvious way: in other words, (F + g)g(u) =
F(u) + Hu. According to [14, Theorem 2], Equation (6.7) implies the following
relationship between the “covering rates” for F and F + g:

r[F 4 gl(0; u, v) = r[F1(u, v).

The reciprocal of the right-hand side is, by definition, the infimum of the constants
k > Osuch thatinequality (4.1) holds for all pairs (u, v) sufficiently near the pair (i, v).
By metric regularity, this number is strictly positive. On the other hand, the reciprocal
of the left-hand side is, by definition, the infimum of the constants y > 0 such that
inequality (4.2) holds for all triples (u, v, H) sufficiently near the pair (i, v, 0).

References

1. Bolte, J., Daniilidis, A., Lewis, A.S.: Generic optimality conditions for semialgebraic convex problems.
Math. Oper. Res. 36, 55-70 (2011)
2. Bonnans, J.E, Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Oper-
ations Research. Springer, Berlin (2000)
3. Burke, J.V.: Descent methods for composite nondifferentiable optimization problems. Math. Program.
Ser. A 33,260-279 (1985)
4. Burke, J.V.: On the identification of active constraints II: the nonconvex case. SIAM J. Numer. Anal.
27, 1081-1102 (1990)
5. Burke, J.V.,Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25, 1197-1211
(1988)
6. Byrd, R., Gould, N.I.LM., Nocedal, J., Waltz, R.A.: On the convergence of successive linear-quadratic
programming algorithms. SIAM J. Optim. 16, 471-489 (2005)
7. Cai, J.-F, Candes, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM
J. Optim. 20, 1956-1982 (2010)
8. Candes, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9,
717-772 (2009)
9. Candes, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians,
Madrid (2006)
10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput. 20, 33-61 (1998)

@ Springer



A proximal method for composite minimization 545

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

Combettes, P., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control
Optim. 43, 731-742 (2004)

Combettes, PL., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4, 1168-1200 (2005)

Daniilidis, A., Hare, W., Malick, J.: Geometrical interpretation of the predictor-corrector type algo-
rithms in structured optimization problems. Optimization 55, 481-503 (2006)

Dmitruk, A.V., Kruger, A.Y.: Metric regularity and systems of generalized equations. J. Math. Anal.
Appl. 342, 864-873 (2008)

Dontchev, A.L., Lewis, A.S., Rockafellar, R.T.: The radius of metric regularity. Trans. Am. Math. Soc.
355, 493-517 (2003)

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407499
(2004)

Fan, J., Li, R.: Variable selection via nonconvex penalized likelihood and its oracle properties. J. Am.
Stat. Assoc. 96, 1348-1361 (2001)

Fletcher, R., Sainz de la Maza, E.: Nonlinear programming and nonsmooth optimization by successive
linear programming. Math. Program. 43, 235-256 (1989)

Friedlander, M.P., Gould, N.LLM., Leyffer, S., Munson, T.S.: A filter active-set trust-region method,
Preprint ANL/MCS-P1456-0907, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne IL 60439, September 2007

Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain nonconvex minimization
problems. Int. J. Syst. Sci. 12, 989-1000 (1981)

Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for £1-minimization: methodology
and convergence. SIAM J. Optim. 19, 1107-1130 (2008)

Hare, W., Lewis, A.: Identifying active constraints via partial smoothness and prox-regularity. J. Convex
Anal. 11, 251-266 (2004)

Tusem, A., Pennanen, T., Svaiter, B.: Inexact variants of the proximal point algorithm without
monotonicity. SIAM J. Optim. 13, 1080-1097 (2003)

Jokar, S., Pfetsch, M.E.: Exact and approximate sparse solutions of underdetermined linear equations.
SIAM J. Sci. Comput. 31, 23-44 (2008)

Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13,
389406 (1998)

Kim, T., Wright, S.J.: An S¢{LP-active set approach for feasibility restoration in power systems, tech.
rep., Computer Science Department, University of Wisconsin-Madison, May 2014. arXiv:1405.0322
Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization.
Math. Program. Ser. A 149, 1-45 (2015)

Lemaréchal, C., Oustry, F., Sagastizdbal, C.: The {/-Lagrangian of a convex function. Trans. Am. Math.
Soc. 352, 711-729 (2000)

Levy, A.: Lipschitzian multifunctions and a Lipschitzian inverse mapping theorem. Math. Oper. Res.
26, 105-118 (2001)

Lewis, A.: Active sets, nonsmoothness, and sensitivity. STAM J. Optim. 13, 702-725 (2003)
Mangasarian, O.L.: Minimum-support solutions of polyhedral concave programs. Optimization 45,
149-162 (1999)

Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev.
Francaise Informat. Recherche Opérationnelle 4, 154-158 (1970)

Mifflin, R., Sagastizdbal, C.: A VU-algorithm for convex minimization. Math. Program. Ser. B 104,
583-608 (2005)

Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among
U-Lagrangian, Reimannian Newton, and SQP methods. Math. Program. Ser. B 104, 609-633 (2005)
Mordukhovich, B.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Appli-
cations. Springer, New York (2006)

Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without
monotonicity. Math. Oper. Res. 27, 170-191 (2002)

Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of matrix equations via nuclear
norm minimization. STAM Rev. 52, 471-501 (2010)

Rockafellar, R.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14,
877-898 (1976)

. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

@ Springer


http://arxiv.org/abs/1405.0322

546 A.S. Lewis, S. J. Wright

40. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1998)

41. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60,
259-268 (1992)

42. Sagastizdbal, C.: Composite proximal bundle method. Math. Program. Ser. B 140, 189-233 (2013)

43. Sagastizabal, C., Mifflin, R.: Proximal points are on the fast track. J. Convex Anal. 9, 563-579 (2002)

44. Shapiro, A.: On a class of nonsmooth composite functions. Math. Oper. Res. 28, 677-692 (2003)

45. Shi, W., Wahba, G., Wright, S.J., Lee, K., Klein, R., Klein, B.: LASSO-Patternsearch algorithm with
application to opthalmology data. Stat. Interface 1, 137-153 (2008)

46. Spingarn, J.: Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim.
4, 123-150 (1981/82)

47. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58, 267-288
(1996)

48. Wen, Z., Yin, W., Zhang, H., Goldfarb, D.: On the convergence of an active set method for £ mini-
mization. STAM J. Sci. Comput. 32, 1832-1857 (2010)

49. Wright, S.J.: Convergence of an inexact algorithm for composite nonsmooth optimization. IMA J.
Numer. Anal. 9, 299-321 (1990)

50. Wright, S.J.: Identifiable surfaces in constrained optimization. STAM J. Control Optim. 31, 1063-1079
(1993)

51. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.
IEEE Trans. Signal Process. 57, 2479-2493 (2009)

52. Yuan, Y.: Conditions for convergence of a trust-region method for nonsmooth optimization. Math.
Program. 31, 220-228 (1985)

53. Yuan, Y.: On the superlinear convergence of a trust region algorithm for nonsmooth optimization.
Math. Program. 31, 269-285 (1985)

54. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894—
942 (2010)

55. Zimmerman, R.D., Murillo-Sdnchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, plan-
ning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26, 12—19
(2011)

@ Springer



	A proximal method for composite minimization
	Abstract
	1 Introduction
	1.1 Outline
	1.2 Variational analysis tools

	2 Examples
	2.1 Approximation problems
	2.2 Nonlinear programming penalty functions
	2.3 The finite polyhedral case
	2.4 Regularized minimization problems
	2.5 Nonconvex problems

	3 Related work
	3.1 Convex h
	3.2 Polyhedral h
	3.3 Regularized form (2.6)
	3.4 c(x)=x: Proximal-point methods
	3.5 Manifold identification
	3.6 Alternative subproblems

	4 Properties of the proximal linearized subproblem
	4.1 Lipschitz properties
	4.2 The proximal step
	4.3 Restoring feasibility
	4.4 Uniqueness of the proximal step and convergence of multipliers
	4.5 Manifold identification

	5 A proximal descent algorithm
	6 Computational results
	Acknowledgments
	Appendix
	References




