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Abstract. We compare two recent variational-analytic approaches to second-order conditions
and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing
the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced
by Poliquin and Rockafellar is equivalent to a classical smooth second-order condition.
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1. Introduction and examples. The distinction between active and inactive
constraints is fundamental throughout optimization, underlying optimality conditions,
sensitivity analysis, and algorithm design. The notion of “partial smoothness” [9]
(along with analogues such as “identifiable surfaces” [23] and “UV decompositions”
[10]) captures the essential geometry associated with activity, and in a fashion suit-
able for generalization beyond classical nonlinear programming into such domains as
semidefinite programming. Partial smoothness illustrates well the power of modern
variational analysis as a unifying language for concrete optimization. It is, further-
more, a generic property in concrete settings such as semialgebraic convex optimiza-
tion [2].

The partly smooth setting allows intuitive and appealing statements of second-
order optimality conditions and associated sensitivity analysis around a “nondegen-
erate” critical point (where the subdifferential contains zero in its relative interior)
[9, 6]. In this case the second-order conditions boil down to the classical smooth case,
resulting in the idea of a “strong critical point.” Much more general second-order
variational analysis is available: see, for example, the monographs [21, 3, 12]. A par-
ticularly attractive approach is via Mordukhovich’s generalized Hessian [12]. That
particular theoretical development is natural and compelling, relying simply on two
sequential applications of the normal cone construction basic to variational analysis,
but computing the generalized Hessian in general can be hard.

Despite computational challenges, the generalized Hessian is clearly a fundamen-
tal tool. In particular, [19] considers one of the most basic questions of sensitivity
analysis: under what conditions does a local minimizer of a function depend in a Lip-
schitz fashion on linear perturbations to the function? Assuming that the function is
both “prox-regular” and “subdifferentially continuous” (as holds, for example, for a
composition of a continuous convex function with a C2-smooth map), this “tilt sta-
bility” property turns out to be equivalent to positive-definiteness of the generalized
Hessian [19].
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We prove two main results. We first show that, for partly smooth, prox-regular,
subdifferentially continuous functions, the generalized Hessian is easy to compute at a
nondegenerate critical point. Then, as a simple consequence using the characterization
of [19], we show that, in this setting, strong criticality is actually equivalent to tilt
stability.

2. Generalized Hessian mappings of simple nonsmooth functions. Un-
less otherwise stated, we follow the notation and terminology of [21]. In particular,
R denotes the extended reals, 0f(x) denotes the set of subgradients of a function
f:R"™ = R at a point x € R", and Ng(z) denotes the normal cone to set S C R"
at a point z € R™. We denote the graph of a set-valued mapping F' by gph F'.

The concept of tilt stability, introduced in [19], characterizes the case where
adding a small linear term to a function shifts the minimizing point in a Lipschitzian
manner and where that point is locally unique.

DEFINITION 2.1. A point T will be said to give a tilt stable local minimum of the
function f:R™ — R if f(Z) is finite and there exists a § > 0 such that the mapping
M : v argmin{f(z) — f(T) — (v,z — T)}

lo—z| <6
is single-valued and Lipschitzian on some neighborhood of v =0, with M (0) = z.

For a C2-smooth function f with Vf(z) = 0, the point Z gives a tilt stable local
minimum of f if and only if V2 f(Z) is positive definite, according to [19, Prop. 1.2].
This fact has been extended to nonsmooth functions in terms of the positivity of a
certain generalized Hessian mapping [19].

DEFINITION 2.2. For any point T and any subgradient v € Of(Z), define the
generalized Hessian mapping 02 f(z|v) : R® = R" by

& F(@l0) :w > {2 | (2, ~w) € N 07(2,5)}.

For a function f : R® — R having 0 € 9f(z), [19, Thm. 1.3] shows that, under
certain assumptions, the point Z gives a tilt stable local minimum of f if and only if
the mapping 92 f(z|0) is positive definite in the sense that

(z,w) > 0 whenever z € 9> f(z|0)(w), w # 0.

To compute the generalized Hessian mapping, it is sufficient to know Ngpn of. Let’s
introduce the definition of a manifold first.

DEFINITION 2.3. We say that a set M C R" is a C?>-smooth manifold of codi-
mension m around a point T € R™ if T € M and there is an open set V.C R™ such
that

MOV =A{zeV | ®(x)=0, i=1,...,m},

where ®; are C?-smooth functions with V®,(z) linearly independent.
In this case, it is well known that the tangent space to M at T is given by

Tam(z) = {V®i(z)},

and the normal space to M at T is

We call ®;(x) = 0 local equations for M.
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Our immediate aim is to compute the normal cone to the graph of the normal
cone mapping Naq. An explicit formula follows from [7, Thm. 3.1], [17, Thm. 7], and
[15, Thm. 3.1]—see also [14, Thm. 3.4] and [13, Thm. 1.127]. Here, for completeness
and to fix our later notation, we give a self-contained classical approach.

DEFINITION 2.4. When F : U — R™ is a C*-smooth mapping of an open set
U C R", the rank of F' at a point x € U is defined as the dimension of range of the
gradient VF(x).

The next result shows that functions of constant rank locally have simple struc-
ture.

THEOREM 2.5 (constant rank). Suppose that U C R™ and V C R™ are open
sets and F : U — V is a smooth map with constant rank k. For any point p € U there
exist open sets Uy C U containing p, Vo C V' containing F(p), and diffeomorphisms
v :Up — oU), ¥ : Vo = (W), with F(Uy) C Vo, such that

YpoFop a1, ., T8 Thits - s Tm) = (T1,...,7%,0,...,0).

Proof. See [8, Thm. 7.8]. O

Remark. The above theorem is also true for C*-smooth functions (k > 1), in which
case ¢ and 1 are C* diffeomorphisms. The following is standard, but we include a
proof for convenience.

PROPOSITION 2.6 (immersion). If M is a C2-smooth manifold of codimension m
around a point T, then there exist an open set U C R"™™ and an injective C?-smooth
mapping G : U — R™ with G(U) = M locally around z.

Proof. Since M is a C?-manifold of codimension m around z, then there exists
an open set V' C R” such that

MNV=A{zeV |®(x)=0,i=1,...,m},

where ®; are C%-smooth with V®;(Z) linearly independent. Shrinking V if neces-
sary, we can assume that V®;(x) are linearly independent for all x € V. The
implicit function theorem is stated as follows: Let F' : R*™™ — R™ be a contin-
uously differentiable function, and let R™™™ have coordinates (z,y). Fix a point
(aty...,an,b1,...,by) = (a,b) with F(a,b) = ¢, where ¢ € R™. If the matrix
[(OF;/0y;)(a,b)] is invertible, then there exists an open set U containing a, an open
set V' containing b, and a unique continuously differentiable function g : U — V such
that

{(z,g(x)) |z €U} ={(2,y) €U XV | F(z,y) = c}.

According to the implicit function theorem, without loss of generality there exist open
sets U C R"™™, W C R™ and a C%-smooth function g : U — W withz € UxW C V
such that

{(u,g(w)) e U x W} ={(u,w) e U x W | ®;(u,w) =0,i=1,...,m}.
Then define an injective function G : U — R™ by
G(u) = (u,g(u)).

It is easy to check that G(U) = M locally around Z. O
PROPOSITION 2.7 (tangents to immersions). Let U C R™ be an open set with a
point w € U, and G : U — R™ be C*-smooth with VG(t) full rank. Then there erists
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an open set Uy C U containing @ such that G(Uy) is a C*-manifold around G(u) and
Tewy)(G(u) = R(VG(u)) for all u € Up.

Proof. Since G : U — R™ is CF-smooth with VG(u) full rank, then G is of
constant rank m around @. According to Theorem 2.5, there exist open sets Uy C R™
containing @, Vo C R™ containing G(u), and diffeomorphisms ¢ : Uy — ¢(Up),
Y Vo = (W), with Uy C U and G(Uy) C Vp, such that

YvoGop Har,...,Tm) = (T1,...,2m,0,...,0).
Hence,
G(UQ)QVQZ{QJEV()I’I/%($):O, izm—l—l,...,n},

where Vi);(x) are linearly independent on V. Therefore G(Up) is a manifold around
G(u). Hence

Ta o) (G(u) = Ker(VO(G(u)),

where ®(x) = (Ym+1,-..,%n). Since ® o G(u) =0 for any u € Uy, then by the chain
rule we get

V(G (1) VG (u) = 0.

Therefore R(VG(u)) C Ker(V®(G(u))). Since dim(VG(u)) = dim(Ker(V®(G(u))))
= m, then

Towy) (G(u) = Ker(VE(G(u))) = R(VG(u). O

THEOREM 2.8 (normals to the normal bundle). Suppose a point T € V C R™,
where V is an open set, and that ®; : V — R (i = 1,...,m) are C2-smooth functions
with V®,;(Z) linearly independent. Then there exists an open set V' C V' containing
T such that

M={zecV'|®(x)=0,i=1,...,m}

is a C?-smooth manifold around T with
(1) Tr(z) = {V®i(2)}" and Num(z) = {Z AiV®;i(z) | A€ R™ }

for any x € M. Furthermore, the normal bundle gph Naq is a C'-smooth manifold
around (x, > VP, (x)) and

Neph N <x,Z)\iV<I>i(a:)> z{(z,w) | we Tam(x), z+ Z)\iVQCDi(x)w € NM(x)}

for any x € M and A € R™.

Proof. Since M is a C2-smooth manifold of codimension m, we can choose G : U —
R" with G(u) = Z as in Proposition 2.6. According to the proof of Proposition 2.6, it
is easy to deduce that VG(u) is full rank for any u € U. Moreover, (1) holds. Define
the following C'-smooth function F : U x R™ — R"™ x R" by

F(u,\) = (G(u), 3 ANcbi(G(u))), where u € U, A € R™.
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Let’s compute Tgph vy, (2, Y, AiV®;(x)) first. Since

_( VG() 0 0
VF(%/\)—(Z)\iv%i((}(u))VG(u) Ve (Gu)) - V‘I’m(G(“))>

has full rank for any (u, A) € U xR™, there exists an open set Uy x Wy C U x R™ such
that locally around (z, Y., \;V®;(z)) the set F(Uy x Wy) = gph Ny is a C!-smooth
manifold by Proposition 2.7. Moreover, we have that

Typh NM( Z/\ Vo, ( ) R(VF(u,\))
{(VJG a, Y \iV20;(G(u) VG (u a+ZbVCI> (G(u )))

Then let z := VG(u)a and w := > \;V2®;(G(u))VG(u)a+ Y, b;VP;(G(u)); we have

gthM< Z)\Vq) )z{(z w) | z € Tpm(x Z/\V2<I> zENM(aj)}.

Since gph N, is a C'-smooth manifold around (@, Y, \iV®i(x)), then Ngpn ny,
(2,2, MV Pi(2) = Teph N (2, >; AiVP;(x)). We can calculate this set from the
fact that for any linear map A and a linear subspace S

{z | Az € S}t = A*St.

ac R be Rm}.

In this case,

A= ( I—Zi)\iv2¢i($) ? ) and S = {(u,v) | u € Tpm(x),v € Nag(x)}.

Therefore

gthM< Z/\VCD )

= {(z,w) | we Tam(x), z+ Z)\iV2CI>i(x)w € NM(;U)} . O

Remark. The classic definition of a manifold is via “coordinate charts.” Then
the manifold M C R"™ defined by Definition 2.3 can be identified as an embedded
submanifold of R™ according to [8, Prop. 8.12]. In this setting, Propositions 2.6
and 2.7 are standard results in smooth manifold theory.

COROLLARY 2.9 (generalized Hessians: smooth case). Suppose a point T € V C
R", where V is an open set and ®; : V. — R (i = 1,...,m) are C*-smooth with
V®,(Z) linearly independent. Then there exists an open set V C V containing T such
that

M={zeV'|®(z)=0,i=1,...,m}

is a C2-smooth manifold around T with the following property. Suppose that h : R"™ —
R is a C%-smooth function around T with 0 € O(h + Spm)(Z). Then there exists a
unique A € R™ such that the Lagrangian L = h + Y, \i®; satisfies VL(Z) =0 and

_ | VPL(@)w+ Nam(z), w e Tam(z),
-+ da)al0)(w) = { we T
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Proof. Since 0 € (h+Jdm)(Z) and V®;(7) are linearly independent, there exists a
unique A € R™ such that —Vh(z) = >, \iV®;(Z). According to [19, Prop. 4.1}, we
have that for any Z € M and w € R™

0% (h + 60)(7(0)(w) = V2h(2)w + 0°0 (2| — VA(Z))(w).
Since
9*5pm(Z| — VR(Z)) : w = {2 | (2,—w) € Neph N (T, —VR(Z))},

this problem boils down to computing the normal cone of gph N at (Z, —Vh(Z)).
According to Proposition 2.8, we have that for any w € T ()

%60 (Z| — VA(Z))(w) = 8%6u <x| > )\ivcbi(a:)) (w) =Y NiV20;()w + N (2).

Hence

82 (h + 50)(2]0) (w) = V2h(T)w + F*6pm(Z] — V(Z))(w)
_ { VEL(Z)w + Nm(Z), w € Ta(z),

Since Ngph N, is determined only by the geometry of M, we can use intrinsic
geometric objects to formulate it. Next, we will introduce the concepts of covariant
derivative and Hessian.

DEFINITION 2.10. Let a C%-smooth manifold M C R™ contain a point . We say
a function f : M — R is C?>-smooth around Z if there exists a representative function
h:R"™ — R which is C*-smooth around T with h|p = f|m locally around .

Let M be a C?-smooth manifold around Z. Then the projection mapping u >
Pp(Z + u) is well defined and C?-smooth around 0 on Th(Z), as proved in [11].

DEFINITION 2.11. Suppose that M C R" is a C?-smooth manifold around a
point T and that a function f : M — R is C>-smooth around x. Then the covariant
derivative V fum(Z) € Tam(Z) is defined by

(Vmf(@),u) = %f(PM(;E + tu))|t=0 for all uw € Ty (Z),

and the covariant Hessian V3, f(Z) : Tm(Z) x Tm(Z) — R is the unique self-adjoint
and bilinear map satisfying

2
(Vo f(@)u,u) = %f(PM (Z 4 tu))|t=0 for all w € Taq(z).

This definition agrees with the classic definition of covariant derivative and Hes-
sian using geodesics as proved in [11]. Suppose that the function f : M — R is
C2-smooth around z. Let h be any C2-smooth representative of f around z, and let C2-
smooth functions ®; define local equations for M. If Vi(Z) € Na(Z), then using the
notation of Corollary 2.9, there exists a unique A such that Vh(z)+ > \;V®;(z) = 0.
Furthermore, the following results have been shown in [11]:

Vamf(@) = Pry ) Vh(Z) and V3, f(Z) = Pr ) V>L(Z)Pry @)
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THEOREM 2.12 (generalized and covariant Hessians). Suppose that M C R™ is
a C?-smooth manifold around a point T and the function f: M — R is C?-smooth
around Z. Define the function f: R™ = R by

2y flx), xeM,
f@) _{ +oo, ¢ M.

Then
0e€df(z) = Viu) =0,
and in that case

Proof. Let h be a C?-smooth representative of f around Z. Then we have
Vaf(@) =0 Vh(z) € Nm(7) < 0 € 0f ().

Let A be the unique multiplier satisfying VA(zZ) + >, \;V®;(Z) = 0. Since f(z) =
h(z) 4+ om(x), then for any w € Th(Z) we have, by Corollary 2.9,
0° f(2[0)(w) = 8*(h + d) (2]0) (w)
= V2n( w+Z)\V2 T)w + Ny (%)

= vi/lf(x)erNM(x).
The result follows. O

We refer to functions of the form f as extended-C2-smooth at Z. The above
theorem gives us some indication of how to calculate a generalized Hessian mapping.
The smooth manifold M simplifies the calculation. “Partial smoothness,” which was
introduced in [9], gives some underlying smooth structure for a nonsmooth function.
In this paper, we are going to show that, for a partly smooth function relative to
manifold M, the local geometry of gph df(x) is determined by the restriction of f
to M, under certain assumptions. In this way, we can extend Theorem 2.9 to partly
smooth functions.

3. Definitions and results.
DEFINITION 3.1. Suppose that C C R"™ is a nonempty convex set. The subspace
parallel to the set C, denoted by par C, is defined by

par C =aff C —x  for any x € C,

where aff C is the affine span of C.

DEFINITION 3.2. Suppose that the set M C R"™ contains the point T. The
function f : R® — R is C?-partly smooth at Z relative to M if M is a C*-smooth
manifold around T and the following four properties hold:

1. (restricted smoothness) f|aq is C2-smooth around Z;
2. (regularity) at every point close to T in M, the function f is subdifferentially
regular and has a subgradient;
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3. (normal sharpness) Na(Z) = par 0f(T);
4. (subgradient continuity) the subdifferential map Of is continuous at T relative
to M.
DEFINITION 3.3. A set S C R™ is C2-partly smooth at a point = relative to a set
M if 65 is C?-partly smooth at x relative to M.
DEFINITION 3.4. Let f be a C2-partly smooth function at a point T relative to a
C?-smooth manifold M. Then we call T a strong critical point of f relative to M if

0€ridf(z)
and there exists € > 0 such that
f@) > f(@)+elz — 2/

for all points x € M near T.

Given certain assumptions, critical points of parametric partly smooth functions
are stable.

THEOREM 3.5 (strong critical points with parameters). Suppose the set Q C
R™xR™ is a C?-smooth manifold containing the point (ij, ) and satisfies the condition

(w,0) € No(y,z) = w=0.
For each y € R™ we define the set
0, — {reR": (1) € Q).
Given any function p: R™ x R" — R, define a function p, : R"* — R by
py(x) =ply,z) fory e R™ and z € R".

Suppose the function p is C2-partly smooth relative to Q. If T is a strong critical point
of the function py relative to the set Qg, then there are open neighborhoods U C R™
of z and V. C R™ of i and a Ct-smooth function ¥ : V — U satisfying ¥(y) = 7,
and with the following properties, for all vectors y € V:
1. for all vectors y € V the set Q, NU is a C*-smooth manifold;
2. for all vectors y € V' the function p, is C*-partly smooth relative to Q, NU;
3. the function py|lo,nu has a unique critical point V(y);
4. U(y) is a strong critical point of the function p, relative to Q, NU.
Proof. See [9, Thms. 5.2, 5.3, 5.7]. d
The concept of prox-regularity extends properties of convexity to a broader class of
functions. It is essential for partly smooth functions to locally identify their manifolds
uniquely.
DEFINITION 3.6. A function f : R" — R is prox-regular at a point T for a
subgradient v € Of(Z) if f is finite at T, f is locally lower semicontinuous at T, and
there exist 1 > 0 and € > 0 such that

1) > f@)+ (o' — o) - 2

' =z <€, |z —z| <e [f(2) - f@)] <€ [v—v| <€ vEDf().

! 2

|2" —x|*  for 2’ # x when

More precisely, we say f is prox-regular at T for v with respect to € and r. Further,
f is prox-regular at T if it is proz-regular at T for every v € Of(z). A set S is
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prox-regular at T for v € Ng(Z) if its indicator function ds is proz-reqular at T for
v € 0o5(T).

PROPOSITION 3.7. Suppose the set S C R" is closed. Then S is proz-regular at
the point T € S if and only if the projection mapping Ps is single-valued near T.

Proof. See [20, Thm. 1.3]. O

DEFINITION 3.8. For a proper lower semicontinuous function f : R" — R and
parameter value X\ > 0, the proximal mapping Py f is defined by

Pyf(x) := argvrvnin{f(w) + %hu — a:|2}

DEFINITION 3.9. For e > 0, the f-attentive e-localization of 0f around (z,v) is
a (generally set-valued) mapping T : R™ = R™ defined by

() { év eof(z) | lv—0l<e} if|lx—Z| <eand|f(x)— f(T) <e

o otherwise.

DEFINITION 3.10. For a function f : R® — R, a set V. C R" is called an
f-attentive neighborhood of T if there exists a § > 0 such that

{zeR" ||z —7| <6, |fz) - f(&)] <o} C V.

DEFINITION 3.11. A function f : R® — R is subdifferentially continuous at
a point T for v, where v € Jf(x), if for every 6 > 0 there exists ¢ > 0 such that
|f(z) — f(ZT)] < § whenever |z — Z| < € and |v — 0] < € with v € Of(x).

PROPOSITION 3.12 (prox-regularity and proximal mapping). Suppose that the
function f : R™ — R is proz-regular at T = 0 for v = 0 with respect to € and r. In
particular suppose that f satisfies the following assumption:

f s locally lower semicontinuous at 0 with f(0) =0, and
r >0 is such that f(x) > —%|z|* for all x #0

(which implies that Pyf(0) = {0} when X\ € (0,2)). Let T be the f-attentive
e-localization T of Of around (0,0). Then for each A € (0, L) there is a neighborhood
X of T =0 such that, on X, the mapping Py f is single-valued and continuous and

Pyf(z) = (I +2T) ().

Proof. See [18, Thm. 4.4]. O

LEMMA 3.13. Suppose that the function f is extended-C2-smooth at Z. Then f
is subdifferentially reqular, proz-reqular, and subdifferentially continuous at T.

Proof. See [18, Ex. 2.8]. a

Note: Function f being prox-regular at £ doesn’t imply that f is subdifferentially
regular at Z. Here is an example. Let f(z,y) = (z—|y|)3. Since there is no subgradient
at (0,0), then f is prox-regular there. However, epi f is not Clarke regular at (0,0, 0),
which implies that f is not subdifferentially regular at (0, 0).

4. Identification for functions. A partly smooth function has a smooth struc-
ture on its corresponding manifold. [6, Thm. 5.3] gives a nice “identification” property
for partly smooth prox-regular functions. Though this theorem is true, its proof is
flawed because it depends on the assumption that the prox-regularity of a function
implies the prox-regularity of its epigraph. We will prove this theorem by using
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proximal mappings in this section. First, let’s see an example which shows that the
prox-regularity of a function isn’t equivalent to the prox-regularity of its epigraph.

Ezample 4.1 (prox-regularity of functions versus epigraphs). Consider the func-
tion f : R — R defined by f(2") = /2" for any n € Z, f affine on [27,2"F1],
f(0) =0, and f(x) = f(—=) for any . First note that

Af(£2") = {i ! + ! }
B ,/2n—1_|_1/2n7 1/277,_|_,/2n—i-1 ’
1 n on

0f(0) = (—o0, +0).

Next, we are going to prove that f is prox-regular at 0 for any v € 9f(0). It is
equivalent to show that there exist e > 0 and r > 0 such that

f(@) > f(z)+ (u,a’ —z) — g|x’ —2[* for x # 2’ when
|| <€, |z| <€ |f(x)|<e |v—ul <€ uedf(z).

For any x — 0 and u € df(x) we have that |u| — +oo. Since |v — u| < € and |z] <€,
then x has to be 0 when € is small. Hence we just have to prove

@) > (u,a') = S|P

By the definition of f, we know that f(z') > |<\/2n—++2n,x’>| Thus f is prox-
regular at 0. However, epi f is not prox-regular at (0,0). If it were, there should be
a neighborhood V' of (0,0) such that the projection mapping Pep; 5 was single-valued
on V, by Proposition 3.7. However, Pep; s is not single-valued around (42", /2") for
any n € Z. Thus epi f is not prox-regular at (0,0).

LEMMA 4.2. Suppose that the function f : R® — R is C?-partly smooth at a
point T relative to a C2-smooth manifold M. Then f + 0 is proz-reqular at T and
of(z) CO(f + dm)(T).

Proof. Let h be any C?-smooth representative of f around Z. Since f < f+6ym =
h + 3 and f 4 g is extended-C2-smooth at Z, so f + drq is prox-regular at Z by
Lemma 3.13, and f () C d(f + 6a)(&). The result follows since f and h + dp are
both regular at z. O

PROPOSITION 4.3 (subdifferential smoothness). Suppose that the function f :
R" — R is C?-partly smooth at a point T relative to a C?-smooth manifold M with
y € ri Of(Z). Let h be any C2-smooth representative of f around . Then

gph O0f N (M x R"™) = gph (Vh + Nag) N(M x R"™) locally around (Z, 7).
Proof. According to [9, Prop. 2.4], we know
Of(x) C aff 9f(x) = Vh(z) + Na(x)
for any z close to Z in M. Thus
gph Of N (M x R™) C gph (Vh + Np) N (M x R™) locally around (T, 3).

Next, we claim the reverse inclusion: given that (z,y) is close to (Z,y), then y €
Vh(z) + Nam(z) implies y € 0f(x). If this is not true, then there exist sequences
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Tp — Tin M and y,, € aff 0f(z,) — g with y,, ¢ df(x,,). Since f is regular at  when
x is close to T in M, then 9f(x) is closed and convex. According to the separation
theorem, for all large n there exists a unit vector z, € par 0f(x,) = Nap(xy,) such that

<Zn7 u> > <Zna yn>

for all u € Of(zy,). Passing to a subsequence if necessary, we can assume that z,
approaches a unit vector z. Since df is continuous at Z relative to M, then 9f(x,,)
converges to 0f(Z). Also, Naq(xy,) converges to Naq(Z). As a result, we have

2€ Nm(Z) and  (z,u) > (2,%)

for any u € 9f(x). To see this, choose u,, — u satistying u,, € df(x,), note (z,, u,) >
(zn,Yn), and take limits. This shows that § is separated from the convex set 9f(T)
in its affine span. However, that contradicts the fact that y € ri df(z). The result
follows. O

COROLLARY 4.4 (set version of subdifferential smoothness). Suppose that a set
S C R™ is partly smooth at a point T relative to a C?-smooth manifold M with
g €ri Ng(Z). Then

gph Ng N (M x R™) = gph Npy N (M x R"™) locally around (Z,7).

PROPOSITION 4.5 (extended-smooth reduction). Suppose that the function f :
R" — R is C?-partly smooth at a point T relative to a C?-smooth manifold M with
0€ridf(z), and f is prox-regular at T for 0. Then if X > 0 is sufficiently small, there
exists a neighborhood V' of T on which the prozimal mappings Pxf and P\(f + om)
agree.

Proof. By changing variables, we can assume Z = 0 without loss of generality.
According to Lemma 4.2, we know that f + 0, is also prox-regular at 0. We can
choose € and r such that f and f + doq are both prox-regular at 0 for 0 with respect
to r and e, particularly with the assumption in Proposition 3.12 holding. Let T' be
the f-attentive e-localization of df around (Z,0). For any A € (0,1/r) there exists a
neighborhood X of & = 0 such that both Py f and P\(f + drq) are single-valued and
continuous, by Proposition 3.12. In order to prove this proposition, it is sufficient to
prove that for any z, — T we have Py f(x,) = Px(f + dm)(zn) for large n. Let h be
any C2-smooth representative of f on M, and define

1
wy, = Py(f +0pm)(xn) = argmin{h(x) +om(z) + ﬁ|aj - xn|2} e M.
Since the assumption in Proposition 3.12 holds for f+d, we have Py (f+dm)(Z) = T.
Moreover, the continuity of Py(f 4+ daq) implies w,, — . Consequently, z,, —w, — 0.
Since w,, minimizes h(x) + dr1(z) + 55| — zn|?, then
1 1
0eo (h(wn) + Ipm(wy) + ﬁ|wn - a:n|2> = Vh(wn) + Na(wy) + X(w" — Tn)

or equivalently

1

X(a:n —wy) € Vh(wy) + Nag(wy,).

Since 0 € ri 9f(z) and (2, — wy,) — 0, then by Proposition 4.3 we know

(X, —wy) € Of (wy,) for large n,
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which also implies

1
—(xn —wy) € T(wy) for large n,

A

since w, — T in M, and so f(w,) — f(Z). Thus
Ty € (I +AT)(wy) for all large n,
from which we get
wp € (I +2T)"Yx,) = Prf(z,) for all large n,

by Proposition 3.12. Hence Py f(z,) = Px(f + dm) () for all large n. O
If 0 € ri f(Z) doesn’t hold, the above result can fail. Here is an example.
Example 4.6. Define the function f as follows:

400, € (—00,0),
0, x € [0, 00).

fz) =

It is easy to see that f is prox-regular at « for all « € [0, 00), and partly smooth at 0
relative to M = {0}. Since 9f(0) = (—o00,0], then 0 doesn’t lie in the interior of
df(0). For any small A > 0,

1
Pyf(z) = argmin{f(w) + ﬁ|x—w|2} =z forall x> 0.

COROLLARY 4.7 (set version of extended-smooth reduction). Let M be a C?-
smooth manifold around a point T. Suppose that a set S is partly smooth at T relative
to M and that S is proz-regular at T for v € ri Ns(Z). Suppose that A > 0 is
sufficiently small. Then for x sufficiently close to Z, the projection Ps(x + Av) lies in
M.

Proof. Apply Proposition 4.5 to f(z) = ds(x) — (v, x). O

COROLLARY 4.8 (active manifold as proximal range). Under the same assump-
tion as Proposition 4.5, the set Py f(V) is a neighborhood of T in M for any sufficiently
small neighborhood V' of Z.

Proof. By Proposition 4.5, it is sufficient to prove that for any x, — & in M
there exists w, — T with Py f(w,) = x, for large n. Since f is partly smooth at &
relative to M, then there exists y, € df(x,) — 0. For large n, we have y,, € T'(zy,).
So x, + Ayn € (I + AT)(zy,), which implies x,, = Py f(xy, + Ayn). Let w, = x, + Ayn.
The result follows. O

COROLLARY 4.9 (set version of active manifold as proximal range). Under the
same assumption as in Corollary 4.7, for any sufficiently small neighborhood V' of z,
the projection Ps(V 4+ A\b) is a neighborhood of T in M.

Proof. Apply Corollary 4.8 to f(z) = ds(z) — (7, x). O

THEOREM 4.10 (identification). Let the function f : R™ — R be C2-partly
smooth at a point T relative to a C%-smooth manifold M and proz-reqular at T for
g € ri 0f(x). Suppose x, — T and f(xy) — f(T). Then

xr € M for all large k
if and only if

dist(y, 0f (zx)) — O.
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Proof. By subtracting an affine function from f and changing variables, we can
assume T =0, § = 0, and f(Z) = 0 without loss of generality. Since f is prox-regular
at 0 for 0, then there exist € > 0 and r > 0 such that

@) > f(@) + (v,2" —z) - g|x—az/|2 for 2’ #x

whenever |z| < e, |f(z)] <€ ]2'| <€ |v] <e¢ and v € df(x). Letting x = 0,v =0, we
have

fa') > g’

for any |7'| < € and 2’ # z. Since we are interested only in the local geometry of
epi f around (0,0), then we can add to f the indicator of a compact neighborhood
Eg (0), which is a closed ball centered at 0 with radius §, to make the assumption in
Proposition 3.12 hold for f: if this proposition is true for f + 5§§(0), it is also true
for f. To sum up, we can assume that f satisfies the assumption in Proposition 3.12
without loss of generality. Fix A such that Proposition 4.5 holds for f. Let T be the
f-attentive e-localization of 0f. If dist(0,9f(x)) — 0, then there exists a sequence
of yr — 0 with y, € 9f(xx). Then we have

(g + Ayk) — z1) € Of (1),

> =

which implies

((xg + Ayr) —zx) € T(xg) for large k.

> =

Thus
Tp+ Ay € (I + AT () for large k.
Consequently
= (T +XT) " Nop + Myp) = Paf(ar + Myp) € M for large k,

by Proposition 4.5. Thus the result follows since the converse is immediate by partial
smoothness. 0

COROLLARY 4.11 (identification for sets). Let the set S be C2-partly smooth at the
point T relative to the C2-smooth manifold M and proz-regular there for n € ri Ng(Z).
If the sequence {x} € S satisfies v, — T, then

dist(n, Ng(z)) = 0 < x € M for all large k.

Proof. The result follows by applying Theorem 4.10 to the indicator function
0. O

COROLLARY 4.12 (uniqueness of active manifold). Consider a set S that is prox-
reqular at a point T for n € ri Ns(z) and C*-partly smooth there relative to each of
the two C%-smooth manifolds My and M. Then near T we have My = M.

Proof. If this is not true, then there exists a sequence of points zj converging to
Z such that z; € M7\ Ma. Since S is partly smooth relative to M7, then the normal
cone Ng(zp) — Ng(Z). Hence dist(n, Ng(x)) — 0. Applying Corollary 4.11 to dg
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with M = My implies 2, € My for all large k, which is contradictory to xp ¢ Ma.
Thus the result follows. |

The definition of strong critical points demands quadratic growth along the man-
ifold. Under the assumption of prox-regularity, strong critical points of such func-
tions are actually locally quadratic minimizers or “strict local minimizers of order
two” in the terminology of [5]. A proof is given by [6, Thm. 6.2], requiring such
functions to be prox-regular at the local minimizer. In this paper, we use another
approach to prove this with a more natural, slightly weaker assumption, requiring
only that such functions be prox-regular at the minimizer for the subgradient 0.

PROPOSITION 4.13 (sufficient optimality conditions). Suppose the function f :
R"™ — R is C2-partly smooth at the point T relative to the C?-smooth manifold M and
proz-regular there for 0 € ri df(Z). Then the following hold:

1. Z is a strict local minimizer of the restricted function f|p < T and is in fact
an unconstrained strict local minimizer of f.

2. T is a strong critical point of f relative to M < f and grows at least quadrat-
ically near T.

Proof. One direction of both cases is obvious. Let’s prove the other direction.
First we are going to prove that Z being a strict local minimizer of the restricted
function f|aq is equivalent to Z being an unconstrained strict local minimizer of f.
Without loss of generality, let £ = 0, f(z) = 0, and f satisfy the assumption in
Proposition 3.12. We are going to prove this proposition by contradiction. Suppose
there exists a sequence x ¢ M — T with

f(zg) < f(z) for all k.

For large k we know that zj lies in the f-attentive neighborhood of Z in Proposi-
tion 4.5. Hence zy # yr = P f(zr) € M and yr — Py f(Z) = Z. Then we have

f(@) = f(z)
1
> mi — Nz — w|?
> mlin{f(w) + 2/\|xk w }
= Flon) + gyl — mil?
= J Yk I\ Yk — Tk
_ 1 2
> f(@) + 55 lyw — el
Consequently, we get a contradiction:
1 2
0> ﬁh/k — xg|”.

Next we are going to prove case 2. Since f grows quadratically at T relative to M,
there exists a § > 0 such that f(x) > §|lz — Z|? around Z relative to M. Define h by
h(x) = f(x) — d|z — z|%. Since §|x — Z|? is C%-smooth, then h is also prox-regular at
z for 0 € ri Oh(Z) and partly smooth at Z relative to M. Moreover, we know that
h(z) > h(Z) locally around Z restricted to M. According to case 1, we know that
h(z) > h(Z) locally around Z. Then the second case follows. O

5. Calculation of generalized Hessian mappings. In general it may be hard
to compute the generalized Hessian mapping. Our goal is to analyze the generalized
Hessian mapping in the easier special case of partly smooth and prox-regular functions.
Given these assumptions plus the subdifferential continuity property, Theorem 4.10
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guarantees that the local geometry of gph 9f is determined by f|r¢. This smooth
structure simplifies the computation of the generalized Hessian mapping and also gives
a geometric explanation of the second condition in Theorem 6.1.

PROPOSITION 5.1 (subdifferential localization and active manifolds). Suppose
that the function f : R™ — R is C2-partly smooth at the point T relative to the C2-
smooth manifold M, and both proz-regular and subdifferentially continuous at T for
g€ ridf(x). Then

gph Of C M x R™

locally around (Z,7).

Proof. Since f is subdifferentially continuous at z for § € df(z), then (z,,y,) —
(z,y) with y,, € 0f (z,,) implies f(z,) — f(Z). According to Theorem 4.10, we know
T, € M for all large n, so the result follows. O

COROLLARY 5.2 (smooth reduction for subdifferential localization). Suppose
the function f : R™ — R is C?-partly smooth at the point T relative to the C?-
smooth manifold M, and both proz-regular and subdifferentially continuous at T for
y € ri Of(Z). Let h be any C2-smooth representative of f around x. Then

gph Of = gph (Vh + Na) N (M x R"™) = gph O(f + dm)

locally around (Z,7).

Proof. This result is easily derived from Propositions 4.3 and 5.1. a

The following result gives a formula for the generalized Hessian mapping for partly
smooth and prox-regular functions.

THEOREM 5.3 (generalized and covariant Hessians). Suppose that the function
f:R"™ = R is C?-partly smooth at the point T relative to the C*-smooth manifold M
and both proz-regular and subdifferentially continuous at T for 0 € ri 0f(z). Then

_ _ V2 f@w+ Npm(z)  for w e Th(T),
0 f(@0)(w) = { 0 for w ¢ Tou (7).

Proof. According to Corollary 5.2, we have that 92f(Z|0) = 9*(f + dm)(Z|0).
Then, by Theorem 2.12, the result follows. 0

COROLLARY 5.4. Suppose that the function f : R" — R is C2-partly smooth at
the point T relative to the C2-smooth manifold M, and both prox-regular and subdif-
ferentially continuous at T for v € ri df (). Let f(x) = f(x) — (v,x). Then

et - { hfO s Xoe) sor € Tt

Proof. First note that
0° f(2]0)(w) = 8*(f — (9,-))(%]0)(w) = &* f(2[v)(w) for all w.

Furthermore, we know that f is partly smooth at T relative to M and both prox-
regular and subdifferentially continuous at Z for 0 € ri 9f(Z). According to Theo-
rem 5.3, we have

0% f (2[v) (w) = 0> f(20)(w) = { g%ﬂﬁ%?ﬁf;@ for w € Tr(2), 0

Without subdifferential continuity, the above result will fail in general.
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Ezxample 5.5. Define the function f: R — R as follows:

1, z € (—00,0),

f(x):{ x, x€l0,00).

It is easy to check that f is prox-regular at 0 with 0 € ri 9f(0) and partly smooth
relative to the manifold M = {0}. However, the function f is not subdifferentially
continuous at 0 for 0 € 9f(0). Then gph df # gph 9(f 4+ dq) locally around (0, 0).

Remark. Corollary 2.9 gives a more concrete description of the generalized Hessian
in terms of a smooth representative of f and smooth equations for M. Next, we
will use Theorem 5.3 to calculate the generalized Hessian mapping for the maximum
eigenvalue function. We will use U-Lagrangian in this example. Let’s introduce the
definition first (cf. [11]).

DEFINITION 5.6. Suppose that a convex function f : R™ — R is C2-partly smooth
at a point T relative to a C%-smooth manifold M. Let U(Z) = Tam(Z) and V(Z) =
Nm(Z). Given g € 0f(Z), the U-Lagrangian of f is the function sz;(ic;g; ) UZ) —
R defined by

Ll’j{(i;g;u) = inf {f(Z+u+v)—glo}.
veEV(T)

Let gu(Z) = Vmf(Z). According to [11], we have gy (%) = VuLZ{,(;E;gu(;E); 0) and
Viuf (@) = V3, L (® gu(2); 0).

Example 5.7. Let S™ be the space consisting of the n-by-n real symmetric ma-
trices. Suppose that the function A; : S — R maps every real symmetric matrix to
its maximum eigenvalue. According to [9, Exp. 3.6], we have the following results:

1. A; is partly smooth relative to the manifold

My, = {X € S™ : A\ (X) has multiplicity m} (1 <m <mn).

2. )1 is a finite-valued convex function. Hence \; is prox-regular and subdiffer-
entially continuous everywhere.

3. There is an n-by-m matrix Q(X), depending continuously on X € M,,,
whose columns are a basis for the eigenspace of X corresponding to A (X).
Then we have

N, (X) = Q(X){W € 8™ : trace W = 0}Q(X)7,
OM(X) = Q(X){W € ST : trace W = 1}Q(X)7,

where ST' denotes the positive semidefinite matrices. -
Now suppose X € M,, and G € ri OA(X). Let pu(X) = M(X) — (G, X).
According to Theorem 5.3, we have

Vi, (X)W + Ny, (X)) for W e Ty, (X),
0 for W ¢ T, (X).

P (XIG) W) = (X 10) 1) = {

By definition,

L} (X;GU) = Veing){Al (X+U+V)—(G,V)}

for U € T, (X),V(X) = Na,, (X).
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Since 0 € Ou(X), we have Vy, u(X) = 0 and

LI(X;0,U) = Velgfx MX+U+V)— (G, X +U+V)}

for U € T, (X),V(X) = N, (X). o B
Note that L};(X;0,U) = LZ)} (X;G;U)—(G,X +U). Then we have Vi, u(X)=
V3, L (X;0;0) = V3, L (X;G;0). According to [16, Thm. 4.12], we have

Vi Ly (X;G;0) = Projr,, (x)° H(X,G)o Projr,, (%)
where H(X, (@) is the symmetric linear operator on S™ defined by

H(X,G)- Y = GY[ (X)), = X)T+ [M(X), - X]TYG forall Y € S™.
([A1(X)I, — X]" is the corresponding generalized inverse.)

For all W € T, (X) we have
H(X,G)- W =GW[\X)I, - X]' + [\M(X)I, — X]TWG.
Hence we have

9\ (X|GY(W)
{GW[/\l() X"+ M(X)L, — X]TWG + N, (X)) for W e T, (X),
(Z) for W ¢ TMm( )

by using the fact that, for any subspace T, the adjoint P7 is simply the embedding
and Pr(y) € y + T+ for any y.

This formula, in conjunction with a suitable chain rule in [15], allows us to study
the generalized Hessian of composite functions of the form x — f(z) = A (F(z)) and
hence second-order optimality conditions for f. Such an approach may give alter-
native insights into the standard second-order optimality conditions for semidefinite
programs; see [22, 3]. We do not pursue that connection here.

6. Stability and partial smoothness. The following theorem in [19] gives a
generalized Hessian characterization for tilt stability.

THEOREM 6.1. For a function f: R™ — R having 0 € 3f(%) and such that f is
both prox-regular and subdifferentially continuous at T for 0, the point T gives a tilt
stable local minimum of f if and only if the mapping 9°f(Z|0) is positive definite in
the sense that

(z,w) > 0 whenever z € 8% f(z|0)(w), w # 0.

In this case, the mapping M from Definition 2.1 and (0f)~1' have locally identical
graphs around the point (0,Z).

Proof. See [19, Thm. 1.3]. O

With the assumption of Theorem 6.1, suppose in addition that f is C2-partly
smooth at Z relative to the C2-smooth manifold M. Then, by combining the result
above with our Hessian calculations in the previous section, we easily deduce the
equivalence of the following properties:

(a) The point Z is a tilt stable local minimum of the function f.

(b) The point Z is a tilt stable local minimum of the function f + d.

(¢) The point Z is a strong critical point of f relative to M.
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To see this note that 92 f(Z]|0) = 9%(f + dm)(Z|0), by Corollary 5.2, so (a) and (b) are
equivalent by Theorem 6.1. We also know that (b) is equivalent to 9?(f + dq)(Z]0)
being positive definite, which is also equivalent to

(V2L(Z)w,w) >0 for any 0 # w € Th(Z)

with L the Lagrangian of Corollary 2.9. This in turn is equivalent to Z being a strong
critical point of f relative to M, according to [9, p. 25]. Therefore the result follows.
With a little extra care, we can dispense with the assumption of subdifferential
continuity. We use the following easy tool.
PROPOSITION 6.2 (local minimizers and perturbation). Suppose that the point T
gives a tilt stable local minimum of the function f: R™ — R. If a sequence of points
v € R™ — 0, the mapping M in Definition 2.1 satisfies

M(vg) >z and f(M(vr)) — f(Z).

Proof. Since M is Lipschitz at 0, then x, := M (vi) — Z. Note that f(z) > f(Z)
for any T # x € Bs(Z). Suppose that f(xx) — f(Z) is not true. Without loss of
generality, we can assume that there exists an € > 0 such that |f(zx) — f(Z)| > € for
all large k. Since T is a strict local minimizer,

flaw) > f(Z) + €
Take limits on both sides. We get

liminf  (2x) > f(2) + e,

which is contradictory to the fact that f(x) is locally l.s.c. at . Therefore f(zx) —
f(@). O

We now have our main result.

THEOREM 6.3 (strong criticality point and tilt stability). Suppose that the func-
tion f : R™ — R is C2-partly smooth at the point T relative to the C2-smooth manifold
M and proz-regular at T for 0 € ri df(z). Then the following are equivalent:

1. the point T is a tilt stable local minimum of the function f;

2. the point T is a tilt stable local minimum of the function f+ da;
3. the point T is a strong critical point of f relative to M;

4. the function f grows quadratically near T.

Proof. By Proposition 4.13, we know (c)<(d). Since f + dq is both prox-regular
and subdifferentially continuous at z for 0 by Lemma 3.13, then we know that

(V2L(Z)w,w) >0 for any w € Th(7),

by Theorem 6.1. This is also equivalent to Z being a strong critical point of f relative to
M by previous argument. Therefore (b)<(c). Since f is partly smooth at Z relative
to M and prox-regular at z for 0 € ri df(Z), then for any (xy,vy) — (Z,0) with
vi € Of (xr), we have z, = M (vx) and f(zx) — f(Z) for large k, by Proposition 6.2.
Hence z, = M(v) € M for all large k, according to Theorem 4.10. Therefore for all
large k we have

M(vg) = argmin {f(z) - f(Z) = (vp, 2 — 7)}

|[z—2k|<6

= argmin {f(z) + dm(z) = f(Z) = opm(T) = (vg, 2 — T)}.

|[z—2k|<6
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Hence the point T gives a tilt stable local minimum of f if and only if Z gives a tilt
stable local minimum of f+d . In other words, we have (a)<(b). Then the theorem
follows. O

Remark. Tt is possible to give a direct proof of the above theorem without using
generalized Hessian mappings.

One particular consequence of our main result is that, in a common concrete
setting, tilt stability and quadratic growth are precisely equivalent. The relationship
between these two properties has been studied in more generality in [3] and [5]. For
example, [3, Thm. 5.36] shows, for a very general class of infinite-dimensional opti-
mization problems, that tilt stability is equivalent to a certain “uniform second order
growth” condition. By a different approach (building on [19]), [5, Cor. 39] shows,
in finite dimensions, that tilt stability is equivalent to a certain second-order growth
property relative to a locally dense subset of the subdifferential graph. In compari-
son, the equivalence resulting from our Theorem 6.3, while depending heavily on the
structure of partial smoothness, is simpler.

7. Strong metric regularity and tilt stability. In this section, we first note
that tilt stability is equivalent to “strong metric regularity” of the subdifferential.

DEFINITION 7.1. A set-valued mapping S : R™ = R"™ is strongly metrically
regular at Z for v if S™! has a Lipschitz continuous single-valued localization around
v for T (cf. [4]).

PROPOSITION 7.2. Suppose that the function f : R™ — R is locally lower semi-
continuous at T with 0 € Jf(x). Moreover, the function f is prox-reqular and subdif-
ferentially continuous at T for 0 € df(x). Then the following are equivalent:

1. The point T gives a tilt stable local minimum for the function f.
2. The point T is a local minimizer, and the subgradient mapping Of is strongly
metrically regular at T for 0.

Proof. (1) = (2). Suppose the point Z gives a tilt stable local minimum to the

function f. Then we know that

M(v) : v+ argmin{ f(z) — f(Z) — (v,z — Z)}

o—z|<d

is single-valued and Lipschitz continuous on around 0 with M (0) = Z. Note that
M(v) = (0f)"'(v) N Bs(Z), where Bs(z) = {z | |v — | < } for any v close to 0.
Hence Jf is strongly metrically regular at z for 0.

(2) = (1). First notice that Z is a strict local minimizer. If Z is not a strict local
minimizer, there exists a sequence of zj such that f(zy) = f(Z). Then 0 € 9f(xy),
which is contradictory to the the strong metrical regularity of df(z) at (z,0). Since
Z is a strict local minimizer, there exists a § > 0 such that f(z) > f(z) for any
T # x € Bs(z). We claim that if vy — 0 and 3 minimizes f(z) — (vg, ) over
Bj;(Z), then z; — Z. Suppose the claim is not true. Then, there exists an € > 0 such
that there are sequences vy, — 0 and xj, minimizing f(z) — (vg,z) over Bs(Z) with
|z —Z| > €. So

f(xr) — (g, o) < f(Z) — (0, 7).

Without loss of generality, choose a subsequence of x,, which converges to . Since f
is locally lower semicontinuous at &, we have

f(@) < f(z)
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by taking limits on both sides. We get a contradiction. Next we define the following
mapping:

M(v) : v~ argmin{f(z) — f(Z) — (v,x — Z)} with M(0) = Z.

o—z|<d

According to the claim, we know that M (v) should lie in the interior of Bs(Z) for
small v. Therefore M (v) are also critical points of f(z) — (v, z) for all small v. Since
df is strongly metrically regular at z for 0, then M (v) is single-valued and Lipschitz
continuous around 0. Therefore T gives a tilt stable local minimum of the function
f- d

The authors of [1] showed that for a proper lower semicontinuous convex func-
tion in a Hilbert space the strong metric regularity property of its subdifferential is
equivalent to a quadratic growth condition involving the function.

THEOREM 7.3. Suppose that f : R" — R is a proper lower semicontinuous
conver function. Then Of is strongly metrically reqular at T for v if and only if there
exist neighborhoods X of T and V' of v and a positive constant ¢ such that for any
v €V there is & € R™ such that 071 f(v) = {Z} and

fx) > f(&)— (v,& —x) +clz — &|* whenever x € X.

Proof. See [1, Cor. 3.9]. a

Theorem 6.3 shows that tilt stability is equivalent to a quadratic growth con-
dition for prox-regular and partly smooth functions, which is also equivalent to the
strong metric regularity of the subdifferential by Proposition 7.2. On the other hand,
Theorem 7.3 implies that strong metric regularity of the subdifferential is equivalent
to a quadratic growth condition for convex functions. In this sense, Proposition 7.2
is an analogue of Theorem 7.3 for a broader class of functions.

Acknowledgments. We would like to thank Dmitriy Drusvyatskiy for pointing
out the simple proof of Corollary 4.13, part 2.

Note added in proof. After the authors completed this work, they became
aware of concurrent work by Mordukhovich and Rockafellar [15]. As an application of
the powerful second-order subdifferential calculus developed there, that paper includes
an extension of the characterization of tilt stability in Theorem 6.1 to favorable classes
of constrained optimization problems, specifically “extended nonlinear programs.”
The philosophy of the current work is somewhat analogous, but concentrates instead
on partly smooth functions.
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