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1. Introduction

This paper deals with three standard subdifferentials. We begin by fixing some notation. The functions that we will be
considering will be allowed to take values in the extended real line R := RU {—o0} U {+00}. Throughout this work, we will
only use Euclidean norms. Hence for a point x € R", the symbol |x| will denote the standard Euclidean norm of x. Given a

point x € R", we let o(]x — x|) be shorthand for a function that satisfies % — 0 whenever x — x with x # x.

Consider a function f: R* — R and a point X with f (%) finite. The set éf()'() consists of all vectors v € R" satisfying
Fx) =& + (v,x — X% +o(jx — X|),

and of (x) is the set of all vectors v € R" such that there are sequences x; € R" and v; € éf(x,-), with (x;, f(x;), vi) —
*, f(), v).

Now assuming (for technical reasons) that f is locally Lipschitz continuous around x, we consider
3f (x) = conv df (%)

(a set that can be easier to approximate numerically—see for example [1]).

For x such that f (x) is not finite, we follow the convention that éf (x) = 8f (x) = 3f (x) = @. The sets 5f (x), 3f (x), 8f (x)
are known as subdifferentials.

The three subdifferentials above appear under a variety of names in standard recent books on the subject. The subdiffer-
ential éf (x) appears under the name of Fréchet subdifferential in Borwein-Zhu [2, page 39] and Mordukhovich [3, page 90],
while in Rockafellar-Wets [4, page 301], its elements are called regular subgradients. Other names include the viscosity sub-
differential [2, page 39] and the presubdifferential [3, page 90]. By contrast, elements of df (x) are called (general) subgra-
dients in Rockafellar-Wets [4, page 301]; the set is called the limiting subdifferential in Borwein-Zhu [2, page 196], and in
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Clarke-Ledyaev-Stern-Wolenski [5, page 61], while Mordukhovich [3, page 83] refers to it as the (basic, limiting) subdif-
ferential. Finally, for locally Lipschitz f, the set df (x) is called the Clarke subdifferential in Borwein-Zhu [2, page 189] and
Mordukhovich [3, page 236], while in Clarke-Ledyaev-Stern-Wolenski [5, page 72] and Mordukhovich [3, page 236] it is
referred to as the generalized gradient ; in Rockafellar—-Wets [4] elements of this set are called Clarke subgradients [4, page 336],
or Clarke convexified subgradients [4, page 733] (corresponding to the terminology “convexified normal cone” [4, page 225]—
see Definition 2.3). Historical commentaries on these subdifferentials may be found in the books by Rockafellar-Wets
[4, pages 234-235 and 344-347], Mordukhovich [3, pages 132-155], and Borwein-Zhu [2, pages 43 and 207].

A principle goal of variational analysis and nonsmooth optimization (and of critical point theory) is to study generalized
critical points of extended-real-valued functions f on R". These are the points x where a generalized subdifferential, such
as 5f (%), 8f (x), or af (x), contains the zero vector. Generalized critical points of smooth functions are, in particular, critical
points in the classical sense, while critical points of convex functions are simply their minimizers. More generally, one could
consider the perturbed function x — f(x) — (v, x), for some fixed vector v € R". Then a point x is critical precisely when
the pair (x, v) lies in the graph of the subdifferential mapping. Hence, it is natural to try to understand geometric properties
of subdifferential graphs.

In particular, an interesting question in this area is to understand the “size” of the subdifferential graph. For instance, for
a smooth function defined on R", the graph of the subdifferential mapping is an n-dimensional surface. Minty [6] famously
showed that the subdifferential graph of a lower semicontinuous, convex function defined on R" is Lipschitz homeomorphic
to R™. In fact, he provided explicit Lipschitz homeomorphisms that are very simple in nature. More generally in [7], Poliquin
and Rockafellar used Minty’s theorem to show that an analogous result holds for “prox-regular functions”, unifying the
smooth and the convex cases. Hence, we would expect that for a nonpathological function, the subdifferential graph should
have the same dimension, in some sense, as the space that the function is defined on. A limiting feature of Poliquin’s and
Rockafellar’s approach is that their arguments rely on convexity, or rather the related notion of maximal monotonicity.
Hence their techniques do not seem to extend to a larger class of functions.

From a practical point of view, the size of the subdifferential graph may have important algorithmic applications. For
instance, Robinson [8] shows computational promise for functions defined on R" whose subdifferential graphs are locally
homeomorphic to an open subset of R". In particular, due to Minty’s result, Robinson’s techniques are applicable for lower
semicontinuous, convex functions. When can we then be sure that the dimension of the subdifferential graph is the same
as the dimension of the domain space?

It is well-known that for general functions, even ones that are Lipschitz continuous, the subdifferential graph can be very
large. For instance, there is a 1-Lipschitz function f: R — R, such that the subdifferential df (x) is the unit interval [—1, 1]
at every point x. Furthermore, this behavior is typical [9] and such pathologies are not particular to df [10,11].

These pathological functions, however, do not normally appear in practice. As a result, the authors of [12] were led to
consider semi-algebraic functions, those functions whose graphs are defined by finitely many polynomial equalities and
inequalities. They showed that for a proper, semi-algebraic function on R", any reasonable subdifferential has a graph that
is, in a precise mathematical sense, exactly n-dimensional. The authors derived a variety of applications for generic semi-
algebraic optimization problems.

The dimension of a semi-algebraic set, as discussed in [12], is a global property governed by the maximal size of any
part of this set. In particular, the result above does not rule out that some parts of the subdifferential graph may be small.
In fact, in the case of the subdifferential mapping df this can happen! It is the aim of our current work to elaborate on this
phenomenon and to show that it does not occur in the case of df . Specifically, we will show that for a lower semicontinuous,
semi-algebraic function f on R", the graph of the subdifferential of has local dimension n, uniformly over the whole set.
Surprisingly, as we noted, this type of result does not hold for df. That is, even for the simplest of examples, the graph of the
subdifferential 9f may be small in some places, despite being a larger set than the graph of df.

To be concrete, we state our results for semi-algebraic functions. Analogous results, with essentially identical proofs, hold
for functions definable in an “o-minimal structure” and, more generally, for “tame” functions. In particular, our results hold
for globally subanalytic functions, discussed in [13]. For a quick introduction to these concepts in an optimization context,
see [14].

2. Preliminaries
2.1. Variational analysis

In this section, we summarize some of the fundamental tools used in variational analysis and nonsmooth optimization.
We refer the reader to the monographs Borwein-Zhu [2], Mordukhovich [3], Clarke-Ledyaev-Stern-Wolenski [5], and
Rockafellar-Wets [4], for more details. _

We say that an extended-real-valued function is proper if it is never —oo and is not always +oc0. For a functionf: R* — R,
we define the domain of f to be

domf ;= {x e R" : f(x) < +o0},
and we define the epigraph of f to be the set
epif :={(x,7) e R" xR:r > f(x)}.
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A set-valued mapping F from R" to R™, denoted by F: R" = R™, is a mapping from R" to the power set of R™. Thus for each
point x € R", F(x) is a subset of R™. For a set-valued mapping F: R" = R™, the domain, graph, and range of F are defined to
be

domF = {x € R" : F(x) # 0},
gphF = {(x,y) e R" xR™ :y € F(x)},
rgeF = UF(X),

XxeR"

respectively. Observe that dom F and rge F are images of gph F under the projections (x, y) — xand (x, y) — y,respectively.
We now define “subjets” corresponding to each subdifferential.

Definition 2.1. Consider a function f: R — R. We define
[9f]:={(x,y,v) € R" x Rx R" 1y = f(x), v € If (0)}.
We make analogous definitions for [3f] and for [3f] when f is locally Lipschitz continuous.

The following is a standard result in subdifferential calculus.

Proposition 2.2 ([4, Exercise 10.10]). Consider a function fi:R" — R that is locally Lipschitz around a point X € R" and a
function f,: R"™ — R that is lower semi-continuous and proper with f,(X) finite. Then the inclusion

i + LX) C 0fi(X) + 0L (X),
holds.

We can now talk about restrictions of subjets. Given a function f: R” — Rand a set M C R", we define the restriction of
[0f] to M to be the set [df ]|i := [0f] N (M x R x R"). Analogous notation will be used for restrictions of the subjet [5f].
Observe that in general, the set [df]|y is not a subjet of any function. More generally, for aset F C R" x R x R" and a set
M C R", weletF|y :=FN (M x R xR").

An open ball of radius r around a point x € R" will be denoted by B, (x), while the closed ball of radius r around a point
x € R" will be denoted by B, (x). The open and the closed unit balls will be denoted by B and B, respectively. Consider a set
M C R". We denote the topological closure, interior, and boundary of M by cI M, int M, and bd M, respectively. We define
the indicator function of M, §);: R" — R, to be 0 on M and +o00 elsewhere. Indicator functions allow us to translate analytic
information about functions to geometric information about sets. In this spirit, we now introduce normal cones, which are
the geometric analogues of subdifferentials.

Definition 2.3. Consider a set M C R" and a point x € R". We define NM x) = éSM ), Ny (x) := 38y (x) and Ny (%) =
cl conv(Ny (x)).

Given any set Q C R" and a mapping F: Q — a where a C R™, we say that F is C'-smooth if for each point x € Q,
there is a neighborhood U of X and a C' mapping F:R" — R™ that agrees with F on Q N U. Henceforth, the word smooth
will always mean C!-smooth. Since we will not need higher orders of smoothness in our work, no ambiguity should arise.
If a smooth function F is bijective and its inverse is also smooth, then we say that F is a diffeomorphism. More generally, we
have the following definition.

Definition 2.4. Consider sets Q C R", a C R™ and a mapping F: Q — 6 We say that F is a local diffeomorphism around a
point x € Q if there exists a neighborhood U of x such that the restriction

Floru:QNU — F(Q NU), (1)

is a diffeomorphism. Now consider another set K C R™. We say that F is a local diffeomorphism around x onto K if there
exists a neighborhood U of x such that the mapping in (1) is a diffeomorphism and K = F(Q N U).

We now recall the notion of a manifold.

Definition 2.5. Consider a set M C R". We say that M is a manifold of dimension r if for each point x € M, there is an open
neighborhood U around x such that M N U = F~1(0), where F: U — R"" is a C! smooth map with VF(X) of full rank. In
this case, we call F a local defining function for M around X.

Strictly speaking, what we call a manifold is usually referred to as a C'-submanifold of R". For a manifold M C R" and a
point x € M, the three normal cones, defined above, coincide and are equal to the normal space, in the sense of differential
geometry. For more details, see for example [4, Example 6.8]. For a smooth map F: M — N, where M and N are manifolds,
we say that F has constant rank if its derivative has constant rank throughout M.
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Foraset M C R" and a point x € R", the distance of x from M is
dy(x) = inf [x —y]|,
M (X) y€M| Yl

and the projection of x onto M is
Pu@) ={y e M : [x—y| = dux)}.

Finally, we will need the following result.

Theorem 2.6 ([4, Example 10.32]). For a closed set M C R", the inclusion
d[dy1(0) C 2[x — Py )],
holds for all x € R".

2.2. Semi-algebraic geometry

A semi-algebraic set S C R" is a finite union of sets of the form
{xeR":Pi(x) =0,...,P,(x) =0,0;(x) <O,...,Qkx) <0},

where Py, ..., Prand Qq, ..., Q;are polynomials in n variables. In other words, S is a union of finitely many sets, each defined
by finitely many polynomial equalities and inequalities. A map F: R" = R™ is said to be semi-algebraic if gphF C R™™ is a
semi-algebraic set. Semi-algebraic sets enjoy many nice structural properties. We discuss some of these properties in this
section. For more details, see the monographs of Basu-Pollack-Roy [15], Lou van den Dries [ 16], and Shiota [ 13]. For a quick
survey, see the article of van den Dries-Miller [17] and the surveys of Coste [18,19]. Unless otherwise stated, we follow the
notation of [17,18].

A fundamental fact about semi-algebraic sets is provided by the Tarski-Seidenberg Theorem [ 18, Theorem 2.3]. Roughly
speaking, it states that a linear projection of a semi-algebraic set remains semi-algebraic. From this result, it follows that
a great many constructions preserve semi-algebraicity. In particular, for a semi-algebraic function f: R" — R, it is easy
to see that the set-valued mappings éf , 8f, 8f along with the subjets [5f 1, [8f1, [3f ] are semi-algebraic. See for example
[14, Proposition 3.1].

Definition 2.7. Given finite collections {B;} and {C;} of subsets of R", we say that {B;} is compatible with {G} if for all B; and
G, eitherB;N G =@ orB; C G

Definition 2.8. Consider a semi-algebraic set Q in R". A stratification of Q is a finite partition of Q into disjoint, connected,
semi-algebraic manifolds M; (called strata) with the property that for each index i, the intersection of the closure of M; with
Q is the union of some M;’s.

The most striking and useful fact about semi-algebraic sets is that stratifications of semi-algebraic sets always exist. In
fact, a more general result holds, which is the content of the following theorem.

Theorem 2.9 ([17, Theorem 4.8]). Consider a semi-algebraic set S in R" and a semi-algebraic map f: S — R™. Then there exists a
stratification 4 of S and a stratification 8 of R™ such that for every stratum M € 4, we have that the restriction f |y is smooth,
f(M) € 8, and f has constant rank on M. Furthermore, if A’ is some other stratification of S, then we can ensure that A is
compatible with A'.

Definition 2.10. Let A C R" be a nonempty semi-algebraic set. Then we define the dimension of A, dim A, to be the maximal
dimension of a stratum in any stratification of A. We adopt the convention that dim ¥ = —oo.

It can be easily shown that the dimension does not depend on the particular stratification. The dimension is a very well
behaved quantity, which is the content of the following proposition. See [16, Chapter 4] for more details.

Theorem 2.11. Let A and B be nonempty semi-algebraic sets in R". Then the following hold.

1. If A C B, thendimA < dimB.

2. dimA = dim clA.

3. dim(clA\ A) < dimA.

4. If f: A — R"is a semi-algebraic mapping, then dim f (A) < dimA. If f is one-to-one, then dim f (A) = dimA. In particular,
semi-algebraic homeomorphisms preserve dimension.

. dimA U B = max{dimA, dim B}.

. dimA x B= dimA + dimB.

[©29)]
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Observe that the dimension of a semi-algebraic set only depends on the maximal dimensional manifold in a stratification.
Hence, the dimension is a somewhat crude measure of the size of the semi-algebraic set. In particular, it does not provide
much insight into what the set looks like locally around each of its point. Hence, this motivates a localized notion of
dimension.

Definition 2.12. Consider a semi-algebraic set Q C R" and a point X € Q. We let the local dimension of Q at x be
dimg (X) = ing dim(Q N B, (x)).
r>
In fact, it is not hard to see that there exists a real number r > 0 such that for every real number 0 < r < r, we have
dimg (x) = dim(Q N B (x)).
The following is now an easy observation.
Proposition 2.13 (18, Exercise 3.19]). For any semi-algebraic set Q C R", we have the identity

dim Q = maxdimg (x).
xeQ

Definition 2.14. Let A C R" be a semi-algebraic set. A continuous semi-algebraic mapping p: A — R™ is semi-algebraically
trivial over a semi-algebraic set C C R™ if there is a semi-algebraic set F and a semi-algebraic homeomorphism h: p~!(C) —
C x F such that p|,-1(c, = projc o h, or in other words the following diagram commutes:

PO O X F
c

We call h a semi-algebraic trivialization of p over C.

Henceforth, we use the symbol = to indicate that two semi-algebraic sets are semi-algebraically homeomorphic.

Remark 2.15. Ifpis trivial over some semi-algebraic set C, then we can decompose p|,-1¢, into a homeomorphism followed
by a simple projection. Also, since the homeomorphism h in the definition is surjective and p|,-1, = projc o h, it easily

follows that for any point ¢ € C, we have p~!(c) = Fand p~(C) = C x p~!(c).

Definition 2.16. In the notation of Definition 2.14, a trivialization h is compatible with a semi-algebraic set B C A if there is
a semi-algebraic set H C F such that k(BN p~!(C)) = C x H.

If h is a trivialization over C then, certainly, for any set B C A we know h restricts to a homeomorphism from B N p~!(C)
to h(B N p~'(C)). The content of the definition above is that if p is compatible with B, then h restricts to a homeomorphism
between B N p~!(C) and the product C x H for some semi-algebraic set H C F.

The following is a remarkably useful theorem [18, Theorem 4.1].

Theorem 2.17 (Hardt Triviality). Let A C R" be a semi-algebraic set and p: A — R™, a continuous semi-algebraic mapping.
Then, there is a finite partition of the image p(A) into semi-algebraic sets Cy, . . ., G, such that p is semi-algebraically trivial over
each C;. Moreover, if Q is a semi-algebraic subset of A, we can require each trivialization h;: p~1(C;) — C; x F; to be compatible
with Q.

For an application of Hardt triviality to semi-algebraic set-valued analysis, see [ 12, Section 2.2]. The following proposition

is a simple consequence of Hardt triviality.

Proposition 2.18. Consider semi-algebraic sets M and Q satisfying M C Q C R". Assume that there exists a continuous mapping
p: Q — R™, for some positive integer m, such that for each point x in the image p(Q) we have dimp~'(x) = dim(p~'(x) N M).
Then M and Q have the same dimension.

Proof. Applying Theorem 2.17 to the map p, we partition the image p(Q) into finitely many disjoint sets Cy, . .., C; such
that for each index i, we have the relations

p~NC) =G xp (o),
p (G NM =G x (p'(c) N M),

where c is any point in ;. Since by assumption, the equation dimp~!(x) = dim(p~!(x) N M) holds for all points x in the
image p(Q), we deduce

dimp~'(G) = dim(p~"(G) N M),
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for each index i. Thus

dimQ = dim U p~1(C;) = maxdimp~'(C;) = maxdim(p~(G;) N M)
" 1 1
1
= dim|_J(p"'(G) N M) = dim M,
i

as we needed to show. 0O

We will have occasion to use the following simple proposition.

Proposition 2.19 ([19, Theorem 3.18]). Consider a semi-algebraic, set-valued mapping F:R" = R™. Suppose there exists an
integer k such that the set F(x) is k-dimensional for each point x € dom F. Then the equality,

dimgphF = dimdomF + k,
holds.

3. Main results

In our current work, we build on the following theorem. This result and its consequences for generic semi-algebraic
optimization problems are discussed extensively in [12].

Theorem 3.1 ([12, Theorem 3.6]). Let f:R" — R be a proper semi-algebraic function. Then the graphs of the subdifferential
mappings of and of have dimension exactly n.

In fact, Theorem 3.1 also holds for df. For more details see [12].
To motivate our current work, consider a manifold M C R". The set,

gphNy = {(x,y) e R" xR" : y € Ny ()},

is the normal bundle of M, and as such, gph Ny, is itself a manifold of dimension n [20, Proposition 10.18]. In particular,
gph Ny is n-dimensional, locally around each of its points. This suggests that perhaps Theorem 3.1 may be strengthened to
pertain to the local dimension of the graph of the subdifferential. Indeed, this is the case. In fact, we will prove something
stronger.

Let f:R" — R be a lower semicontinuous, proper, semi-algebraic function. Observe that the sets gph df and [3f]
are in semi-algebraic bijective correspondence, via the map (x, v) —— (x,f(x), v), and hence these two sets have the
same dimension. Thus by Theorem 3.1, the dimension of the subjet [0f] is exactly n. Combining this observation with
Proposition 2.13, we deduce that the local dimension of [df] at each of its points is at most n. In this work, we prove that,
remarkably, the local dimension of [df] at each of its points is exactly n (Theorem 3.8). From this result, it easily follows that
the local dimension of gph df at each of its points is exactly n as well. Analogous result holds for the subjet [éf].

The proof of Theorem 3.8 relies on a very general accessibility result, which we establish in Lemma 3.2. This result, in fact,
holds in the absence of semi-algebraicity. In Remark 3.10, we provide a simple example illustrating that the assumption of
lower-semicontinuity is necessary for our conclusions to hold. Then in Section 3.2, we show that the graph of the mapping
df may have small local dimension at some of its points. Thus, the analogue of Theorem 3.8 fails for the subdifferential df.
This further illustrates the subtlety involved when analyzing local dimension.

3.1. Geometry of subdifferential mappings

Consider a proper, lower-semicontinuous, semi-algebraic function f: R* — R. In this subsection, we aim to prove that
the subjet [éf ], and consequently [df], has local dimension n around each of its points (Theorem 3.8). Before proceeding
with the technical details of the argument, it is instructive to first describe the following situation, which will be of great
importance.

Consider an m-dimensional semi-algebraic manifold M C dom éf, with f smooth on M. It is not difficult to see that for
any point x € M, a translate of B f (x) is contained in the normal space Ny, (x). Therefore, the inequality

dim df (x) <n —m, (2)

holds. This inequality can easily be strict for every point x € M. (For example, consider the function f on R?, where
f(x,y) = (Jx| + |y])?, and a singleton set M := {(0, 0)}.) In light of this, suppose that the strict inequality, dim[éf]|M <n,
holds. Then validity of Theorem 3.8 would immediately imply the inclusion [5f]|M Cd [5f]|Mc.

In fact, in Corollary 3.3 we prove this consequence directly, that is without using Theorem 3.8. The key ingredient in the
proof of this corollary is a powerful accessibility result, which we establish in Lemma 3.2. Armed with Corollary 3.3 and
stratification techniques, we then prove Theorem 3.8 in its full generality. We now begin the formal development.
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Lemma 3.2 (Accessibility). Let f: R" — R be a lower semicontinuous function and M C R" a set on which f is finite. Suppose

that M is locally closed around a point X € M and consider a triple (X, f (X), v) € [5f]|M. Suppose that there exists a sequence of
real numbers m; — oo such that

v € bd U 9 <f(~) + %mi| : —5<|2> (%),

xeM

for each i. Then the inclusion (x, f (x), v) € cl [éf]|Mc holds. That is there exist sequences x; and v;, with v; € éf(xi) and x; ¢ M,
such that (x;, f (x;), v;) converges to (X, f (x), v).

Proof. We first prove the lemma for the special case when (x, f (x), v) = (0, 0, 0). The general result will then easily follow.
Thus, assume that there exists a sequence of real number m; with m; — o0, such that the inclusion

0ebd U mix + of (x), (3)

xeM

holds. We must show that there exists a sequence (x;, f (x;), v;) € [5f]|Mc converging to (0, 0, 0).
We make some simplifying assumptions. Since f is lower semicontinuous and M is locally closed around the point 0,
there exists a real number r > 0 such that f|, > —1and theset M N %rB is closed.

Claim. Without loss of generality, we can replace the function f by f, := f + 6,5 and the set M by M, := M N %rﬁ.

Proof. Observe (0,0, 0) € [5f0]|Mo. Furthermore, we have
[0fslluy = O + 8.8l 5 = [Ty 115 C 105l
Combining this with (3), we obtain

0ebd | mx+af,(.

XeMp

Consequently, if we replace the function f by fy and the set M by My, then the requirements of the lemma will still be satisfied.
Now suppose that with this replacement, the result of the lemma holds. Then there exists a sequence (x;, f (x;), vi) € [3fo]lImg
converging to (0, 0, 0). For indices i satisfying |x;] < %r, we have x; € M and (x;, f(x;), v;) € [éf]. Thus restricting to

large enough i, we obtain a sequence (x;, f (x;), v;) € [f)f 1Ime converging to (0, 0, 0), as claimed. Therefore, without loss of
generality, we can replace the function f by f, and the set M by M,. O

Thus to summarize, we have

1 _
* f®,v)=(0,0,0, flg=—-1, MC ErB,
M is closed, f(x) = +oo forx ¢ rB.

We now define a certain auxiliary sequence of vectors y;, which will allow us to construct the sequence (x;, f (x;), v;) that
we seek. To this end, let y; be a sequence satisfying y; — 0 and
yi ¢ | mx+of ), 4)
xeM

for each index i. By (3), such a sequence can easily be constructed. The motivation behind our choice of the sequence y; will
soon become apparent.
The key idea now is to consider the following sequence of minimization problems.

P(i) : Q}{l}(—ym) + mi(dy (%) + [xI*) + f(0).
Since f is lower semi-continuous and the domain of f is bounded, we conclude that there exists a minimizer x; for the
problem P(i). For each index i, we have
yi € almi(dy () + |- ) +FOIx) C almidy () + | - )] (x0) + 9f (xi)
C mi(x; — Py (X)) + mix; + of (x;), (5)
where the inclusions follow from Proposition 2.2 and Theorem 2.6. We claim

Xi & M, (6)
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for each index i. Indeed, if it were otherwise, from (5) we would have

yi € mxi + 0f () € | mx + 9 (),

xeM

thus contradicting our choice of the vector y;.
Now from (5), let z; € Py (x;) be a vector satisfying

vi =Y — mi(x; — z;) — mx; € 9f (x;). (7)

Our immediate goal is to show that the sequence (x;, f (x;), v;) € [df]|mc converges to (0, 0, 0). To that end, evaluating the
value function of P(i) at 0, we obtain

0 > (=yi, %) + mi(dy (x) + [xiI*) +f (%)
From (6), we deduce x; # 0, and combining this with the inequality above, we obtain

> > my d2, (x)) F&x)

+ mi|X,'| + .
|Xi] |Xi]

Since y; — 0, m; — 00, and the function f is bounded below, it is easy to see that x; converges to 0. Furthermore, since
we have 0 € df (0), we deduce

f(x) _ ol

X[ = |x]

Xi
lvil > (yi, —
[Xi]

In particular, we conclude m;|x;| — 0 and f(x;) — 0. Since dy (x;) < |x;|, we deduce m;dy;(x;) — 0. Hence from (7), we
obtain
[vil < |yil + midy (%) + m;|x;| — 0.

Thus we have produced a sequence (x;, f (x;), v;) € [df]|mc converging to (0, 0, 0) withx; & M for each index i. We are almost
done. The trouble is that the inclusion v; € df (x;) holds, rather than v; € 3 f (x;). However, this can be dealt with easily. Since
M s closed, it is easy to see that we can perturb the triples (x;, f (x;), v;), to obtain a sequence (x;, f (), v) € [éf] converging
to (0, 0, 0), still satisfying x; ¢ M for each index i. This completes the proof for the case when (x, f (X), v) = (0, 0, 0).

Finally, we prove that the lemma holds when (x, f (x), v) # (0, 0, 0). Suppose that the point (x, f (x), v), the set M, and
the function f satisfy the requirements of the lemma. Now, consider the function g(x) := f(x +X) — (v, x) —f (x) and the set
N := M — x. We will show that the function g, the set N, and the triple (0, 0, 0) also satisfy the requirements of the lemma.
To this end, observe 0 € N and g(0) = 0. It is easy to verify the equivalence,

vedgx) & v+ e If(x+R).
Hence, clearly, (0, 0, 0) € [ég]lN. Furthermore, the equation
1 _ 1 _
QK (g<~) +-m|- |2) w=-v+[]Jo (f(-) +om|- —x|2) ®),
2 2
xeN xeM

holds. Consequently, we deduce 0 € bd |,y 0 (g(-) + %ml . |2) (x). We can now apply the lemma to the triple (0, 0, 0), the

function g, and the set N. Thus there exists a sequence (x;, f (x;), v;) € [ég] |ne with (x;, g(x;), v;) — (0, 0, 0). Now observe
that the sequence (x; + X, f (x; + X), v; + v) lies in [df ]|;c and converges to (X, f (x), v), and hence the lemma follows. O

In the semi-algebraic setting, Lemma 3.2 yields the following important corollary. This corollary, as alluded to in the
beginning of this subsection, will be crucial for proving our main result (Theorem 3.8).

Corollary 3.3. Consider a lower semicontinuous, semi-algebraic function f:R® — R and a semi-algebraic manifold M C R"
such that f |y is finite. Assume dim[df ]|y < n. Then the inclusion

[8f 1w C L [Of Tlue,

holds. That is, for any triple (X, f (X), v) in the restricted subjet [0f ]|y, there exist sequences x; and v;, with v; € EA)f () and x; € M,
such that (xi, f (%), vi) = (%, f (%), v).

Proof. Consider an arbitrary triple (x, f(x), v) € [éf 1|m and let m be a real number. Observe that the map

¢:[9fllm — gph (m(- — %) + af (1)) Im
x,y,v) > (x,m(x —X) +v)
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is bijective. Thus we deduce
dim gph (m(- — X) + 9f (")) |y = dim[df]|m < n.
Hence, the set

Umex—»+arx =0 (f(~) + %m| : —Rlz) *),

xeM xeM

has dimension strictly less than n, and in particular has empty interior. Therefore, we have

v € bd U 9 (f(«) + %ml . —Rlz) (),

xeM

for any real number m. Noting that any manifold is locally closed around each of its point and using Lemma 3.2, we deduce
that the inclusion (x, f (x), v) € cl[df]|yc holds. Consequently we obtain

[0flm C cl[0f 1|me- (8)

Now consider a triple (%, f (X), v) € [9f]|m. Then there exists a sequence (x;, f (x;), v;) € [éf] converging to (x, f (x), v).
If there is a subsequence contained in M€, then we are done. If not, then the whole sequence eventually lies in M, and then
from (8) the result follows. O

We now establish a few simple propositions concerning local dimension.

Proposition 3.4. Consider a semi-algebraic set Q C R" and a point X € Q. Let {M;} be any stratification of Q. Then we have the
identity

dimg () = max{dim M; : X € cI M;}.

Proof. Since there are finitely many strata, there exists some real number € > 0 such that forany 0 < r < €, we have

enB®= |J MnB®.

i: xecl M;

Hence, we deduce

dim(Q N B, (X)) = max{dim(M; N B, (X)) : x € cIM;}

= max{dimM; : x € cI1M;},
1

where the last equality follows since the inclusion x € cl M; implies that M; N B, (x) is a nonempty open submanifold of M;,
and hence has the same dimension as M;. Letting r — 0 yields the result. O

Definition 3.5. Given a stratification {M;} of a semi-algebraic set Q C R", we will say that a stratum M is maximal if it is not
contained in the closure of any other stratum.

Remark 3.6. Using the defining property of a stratification, we can equivalently say that given a stratification {M;} of a
semi-algebraic set Q C R", a stratum M is maximal if and only if it is disjoint from the closure of any other stratum.

Proposition 3.7. Consider a stratification {M;} of a semi-algebraic set Q C R". Then given any point X € Q, there exists a
maximal stratum M satisfying x € cIM and dim M = dimg (x).

Proof. By Proposition 3.4, we have the identity

dimg (x) = max{dim M; : x € cIM;}.
1

Let M be a stratum achieving this maximum. If there existed a stratum M; satisfying M C clM;, then we would have
dimM < dimM; and x € cIM C cl M;, thus contradicting our choice of M. Therefore, we conclude that M is maximal. O

We are now ready to prove the main result of this section.

Theorem 3.8. Let f: R" — Rbeaproper lower semicontinuous, semi-algebraic function. Then the subjet [5 f ] has local dimension
n around each of its points. The same holds for the subjet [0f].
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Proof. We first prove the claim for the subjet [é f1 and then the case of [0f ] will be an easy consequence. Observe that the
sets gph 5f and [éf ] are in semi-algebraic bijective correspondence, via the map (x, v) —> (x, f(x), v), and hence these
two sets have the same dimension. Combining this observation with Theorem 3.1, we deduce that the dimension of [5 f11is
n. Thus the local dimension of [5f] at any point is at most n. We must now establish the reverse inequality.

Consider the subjet [5f] and the projection map 7: [éf] — R, which projects onto the first n coordinates. Applying
Theorem 2.9 to 7, we obtain a finite partition of [5 f] into disjoint semi-algebraic manifolds {M;} and a finite partition of the
image n([EA)f]) into disjoint semi-algebraic manifolds {L;}, such that for each index i, we have 7 (M;) = L; for some index j.

Assume that the statement of the theorem does not hold. Thus there exists some point in the subjet [éf ] at which [éf ]

has local dimension strictly less than n. Therefore, by Proposition 3.7, there is a maximal stratum M with dimM < n. We
now focus on this stratum.

Lemma 3.9.

dim[af“n(m) <n.

Proof. For each x € w (M), the set M N ~!(x) is open relative to 7w ~!(x), since the alternative would contradict maximality
of M. Thus

dim(M N7~ 1(x)) = dim 7~ (x),

for each x € m(M). Therefore the sets M and [éf]ln(M), along with the projection map 7, satisfy the assumptions of
Proposition 2.18. Hence we deduce dim[éf]|ﬂ(,v,) = dimM < n. Observe [df] \ [éf] C (cl [éf]) \ [éf]. Hence as a direct

consequence of Theorem 3.1, we see dim([df] \ [5f])|,,(M) < dim((cl [éf]) \ [éf]) < n.Thus we conclude dim[df ]|, 1) < 7,
as was claimed. O

Consider an arbitrary point x € 7 (M) with (x, f(X), v) € M. Combining Corollary 3.3 and Lemma 3.9, we deduce that
there exists a sequence (x;, f (x;), v;) € [é f] converging to (x, f (x), v) where x; & 7 (M). Since there are finitely many strata,
we conclude that the point (%, f(x), v) € M is in the closure of some stratum other than M, thus contradicting maximality
of M. Thus the subjet [éf] has local dimension n around each of its points.

Now for the subjet [0f ], observe that for any real number r > 0, we have B, (x, f (x), v) N [éf] # (). Hence it easily follows
that [df] has local dimension n around each of its points as well. O

Remark 3.10. If a semi-algebraic function f: R” — Ris not lower semicontinuous, then the result of Theorem 3.8 can easily
fail. For instance, consider the set S := {x € R? : |x| < 1} U {(1, 0)}. The local dimension of [38s] at ((1, 0), 0, (1, 0)) is one,
rather than two.

3.2. Geometry under convexification

Consider a locally Lipschitz function f: R® — R, and let §2 be the set of points at which f is differentiable. By Rademacher’s
theorem, £2 has full measure, and furthermore it is well known that the representation

Af (x) = conv {lim Vf(x;) : x; — X, x; € 2},

is valid for each point x € R". _

It has been shown in [12, Theorem 3.6] that if f is semi-algebraic, then the global dimension of the set gph df is n. Since
at each point x, the subdifferential df (x) contains both B f (x) and Of (x), it is tempting to think, in light of Theorem 3.8, that
the set gph df should have local dimension n around each of its points, as well.

It can be shown that this indeed is the case when n < 2. In fact, this even holds for semi-linear functions for arbitrary n.
(Semi-linear function are those functions whose domains can be decomposed into finitely many convex polyhedra so that
the restriction of the function to each polyhedron is affine.) However for n > 3, as soon as we allow the function f to have
any curvature at all, the conjecture is decisively false. Consider the following illustrative example.

Example 3.11. Consider the function f: R®> — R, defined by

. 2 . 3

min{x, y, z°}, , if (x,y,z) e R}

f(*,y,2) = { min{—x, —y, 2%}, if(x,y,2) € R>
0, otherwise.

It is standard to verify that f is locally Lipschitz continuous and semi-algebraic. Let I" := conv {(1, 0, 0), (0, 1, 0), (0, 0, 0)}.
Consider the set of points £2 C R? where f is differentiable. Then we have

conv {lim Vf(y) : y; — (0,0,0), % € 2 NR3} = conv{(1,0,0), (0, 1,0), (0,0,0)} = I,
1— 00
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and
conv{,lim Vf(yl) Vi~ (Oa 07 0)5 Vi € 22N Ri} = COI‘lV{(—], Oa 0)7 (07 _1» 0)5 (07 07 0)} =-TI.
1—00

In particular, we deduce 3f (0, 0, 0) = conv {I" U —I"}. Hence the subdifferential 3f (0, 0, 0) has dimension two.
Let ((xi, yi, zi), vi) € gph 8f|R§r be a sequence converging to ((0, 0, 0), v), for some vector v € R>. Observe v; € conv

{(1,0, 2z), (0, 1, 2z)), (0, 0, 0)}. Hence, we must have v € I'. Now consider a sequence ((x;, i, zi), Vi) € gphgflRi con-

verging to ((0, 0, 0), v), for some vector v € R3. A similar argument as above yields the inclusion v € —TI'. This implies
that for any vector v in df (0, 0, 0) \ (I" U —TI"), there does not exist a sequence ((x;, ¥i, zi), v;) € gphdf converging to
((0, 0, 0), v). Therefore for such a vector v, there exists an open ball B ((0, 0, 0), v) such that B.((0, 0, 0), v) N gph af C
{(0,0,0)} x af (0, 0, 0). Thus the local dimension of gph df around the pair ((0, 0, 0), v) is two, instead of three.

3.3. Composite optimization

Consider a composite optimization problem
min g(F(x)),
X

where g: R™ — Ris alower semicontinuous, semi-algebraic function and F: R* — R™ is a smooth, semi-algebraic mapping.
It is often computationally more convenient to replace the criticality condition 0 € d(g o F)(x) with the potentially different
condition 0 € VF(x)*dg(F(x)), related to the former condition by an appropriate chain rule. See for example the discussion
of Lagrange multipliers [21]. Thus it is interesting to study the graph of the set-valued mapping x — VF(x)*9g(F(x)). In
fact, it is shown in [ 12, Theorem 5.3] that the dimension of the graph of this mapping is at most n. Furthermore, under some
assumptions, such as the set F~!(dom dg) having a nonempty interior for example, this graph has dimension exactly n.

In the spirit of our current work, we ask whether under reasonable conditions, the graph of the mapping x
VF(x)*0g (F(x)) has local dimension n around each of its points. In fact, the answer is no. That is, subdifferential calculus
does not preserve local dimension. As an illustration, consider the following example.

Example 3.12. Observe that for a lower semicontinuous function f, if we let F(x) = (x, x) and g(x,y) = f(x) + f(y), then
we obtain VF(x)*0g (F(x)) = df (x) + 9f (x). Now let the function f: R — R be f(x) = —|x|. Then we have

1, x<0
of x) = q{—1,1}, x=0
-1, x > 0.

The set gph df has local dimension 1 around each of its point, as is predicted by Theorem 3.8. However, the graph of the
mapping x — df(x) + df (x) has an isolated point at (0, 0), and hence this graph has local dimension zero around this
point, instead of one. Furthermore, using Theorem 3.8, we can now conclude that the mapping x — df (x) + df (x) is not the
subdifferential mapping of any semi-algebraic, lower semicontinuous function.

4. Consequences

In this section, we present some consequences of Theorem 3.8. Specifically, in Section 4.1 we develop a nonconvex, semi-
algebraic analog of Minty’s Theorem, and in Section 4.2 we derive certain sensitivity information about variational problems,
using purely dimensional considerations. Both of these results illustrate that local dimension shows the promise of being a
powerful, yet simple to use, tool in semi-algebraic optimization.

4.1. Analogue of Minty’s Theorem

The celebrated theorem of Minty states that for a proper, lower semicontinuous, convex function f:R" — R, the set
gph df is Lipschitz homeomorphic to R" [6]. In fact, for each real number A > 0, the so called Minty map (x, y) — Ax+yis
such a homeomorphism. For nonconvex functions, Minty’s theorem easily fails. However, one may ask if for a nonconvex,
lower semicontinuous function f: R" — R, a Minty type result holds locally around many of the points in the set gph of. In
general, nothing like this can hold either. However, in the semi-algebraic setting, Theorem 3.8 does provide an affirmative
answer.

Proposition 4.1. If Q C RP has local dimension q around every point, then it is locally diffeomorphic to R? around every point
in a dense semi-algebraic subset.

Proof. Applying Theorem 2.9, we obtain a stratification {M;} of Q. Let D be the union of the maximal strata in the
stratification. By Proposition 3.7, we see that D is dense in Q. Now consider an arbitrary pointx € D and let M be the maximal
stratum containing this point. Since Q has local dimension g around x, we deduce that the manifold M has dimension q. By
maximality of M, there exists a real number r > 0 such that B,(x) N Q = B,(x) N M, and hence Q is locally diffeomorphic
to RY around x, as we claimed. O
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Consider a lower semicontinuous, semi-algebraic function f: R* — R. Combining Proposition 4.1 and Theorem 3.8, we
see that gph of is locally diffeomorphic to R" around every point in a dense semi-algebraic subset. In fact, we can significantly
strengthen Proposition 4.1. Shortly, we will show that we can choose the local diffeomorphisms of Proposition 4.1 to have
a very simple form that is analogous to the Minty map.

We will say that a certain property holds for a generic vector v € R" if the set of vectors for which this property does
not hold is a semi-algebraic set of dimension strictly less than n. In the semi-algebraic setting, this notion coincides with
the measure-theoretic concept of “almost everywhere”. For a more in-depth discussion of generic properties in the semi-
algebraic setting, see for example [22,12].

Definition 4.2. For a set Q C R" and a map ¢:Q — R™, we say that ¢ is finite-to-one if for every point x € R™, the set
¢~ 1(x) consists of finitely many points.

We need the following proposition, which is essentially equivalent to [17, Theorem 4.9,]. We sketch a proof below, for
completeness.

Proposition 4.3. Let Q C R"xR" be a semi-algebraic set having dimension no greater than n. Then for a generic matrixA € R™",
the map

#a:Q — R,

*,y) > Ax +y,
is finite-to-one.
Proof. Let | € R"™*" be the identity matrix and consider the matrix [A, I]. Let L denote the nullspace of [A, I]. It is standard
to check the equivalence

Ax+y=b<s m1(x,y) =m1(0,b), (9)

where 7,1 denotes the orthogonal projection onto Lt. Recall that each element of a dense collection of n dimensional
subspaces of R” x R" can be written uniquely as rge [A, I]7 for some matrix A. From [17, Theorem 4.9], we have that for
a generic n-dimensional subspace U of R" x R", the orthogonal projection map 7y:Q — U is finite-to-one. Hence, we
deduce that for a generic matrix A € R™", the corresponding projection map ;. is finite-to-one. Combining this with (9),
the result follows. O

Proposition 4.4. Consider a semi-algebraic set Q C R" and a continuous, semi-algebraic mapping p: Q — R™ that is finite-to-
one. Then there exists a stratification of Q such that for each stratum M, the map p|y is a diffeomorphism onto its image.

Proof. Applying Theorem 2.17, we obtain a partition of the image p(Q) into semi-algebraic sets C; such that the map p is
semi-algebraically trivial over each C;. Thus for each index i, and any point ¢ € G, there is a semi-algebraic homeomorphism
h: p~1(C;)) = C; x p~1(c), such that the diagram,

p(C) = Cx (o)

lpmjcl
p

C;

commutes.

Fix some index i. We will now show that the map p is injective on any connected subset of p~!(C;). To this effect, consider
a connected subset M C p~'(C;). Observe that the set h(M) is connected. Since p~!(c) is a finite set, we deduce that there
exists a point v € p~'(c) such that the inclusion,

h(M) C G x {v} (10)

holds. Now given any two distinct points x, y € M, since h is a homeomorphism, we have h(x) # h(y). Combining this with
(10), we deduce p(x) = projg, o h(x) # proj, o h(y) = p(y), as we needed to show.

Applying Theorem 2.9 to the map p, we obtain a finite partition of Q into connected, semi-algebraic manifolds {M;}
compatible with {p~1(C;)}, such that for each stratum M;, the map p| m; is smooth and p has constant rank on M;. Fix a
stratum M. Since M is connected, it follows from the argument above that p is injective on M. Combining this observation
with the fact that p has constant rank on M, we deduce that p|y is a diffeomorphism onto its image. O

We are now ready for the main result of this subsection.

Theorem 4.5. Consider a semi-algebraic set Q C R" x R" that has local dimension n around every point. Then for a generic
matrix A € R™", the map

¢a:Q = R,
(%,y) = Ax +y,

is a local diffeomorphism of Q onto an open subset of R", around every point in a dense semi-algebraic subset of Q.



D. Drusvyatskiy et al. / Nonlinear Analysis 75 (2012) 1231-1245 1243

Proof. By Proposition 4.3, we have that for a generic matrix A € R™", the map ¢, is finite-to-one. Fix such a matrix A.
Consider the stratification guaranteed to exist by applying Proposition 4.4 to the map ¢4, and let D4 be the union of the
maximal strata in this stratification. By Proposition 3.7, we see that D, is dense in Q. Consider a point (x, ) € Dy, which is
contained in some maximal stratum M. Since the set Q has local dimension n around each of its points, we deduce that the
stratum M is n-dimensional. Recall that the mapping ¢, |y is a diffeomorphism onto its image. By maximality of M, there is a
real number € > 0 such that B.(x, y) "M = Bc(x, ¥) N Q and hence the restricted mapping ¢als. i jnq is a diffeomorphism
onto its image. Consequently the image ¢4 (B¢ (X, ¥) N Q) is an n-dimensional submanifold of R", and hence is an open subset
of R". O

As a direct consequence of Theorems 4.5 and 3.8, we obtain

Corollary 4.6. Let f:R" — R be a lower semicontinuous, semi-algebraic function. Then for a generic matrix A € R™", the map

¢a:gphdf — R,
*xy) = Ax+y,

is a local diffeomorphism of gph df onto an open subset of R" around every point in a dense semi-algebraic subset of gph dof. The
analogous statement holds in the case of of.

4.2. Sensitivity

Proposition 4.7. Consider a semi-algebraic set Q and a finite-to-one, continuous, semi-algebraic map ¢:Q — R™. Then the
map ¢ does not decrease local dimension, that is

dimQ (X) < dimrgetb d)(X),
for any point x € Q. In particular, semi-algebraic homeomorphisms preserve local dimension.

Proof. By Proposition 4.4, there exists a stratification of Q into semi-algebraic manifolds {M;}, such that for each maximal
stratum M, the restriction ¢|y is a diffeomorphism onto its image. Fix some point x € Q. By Proposition 3.7, there is a
maximal stratum M satisfying x € cIM and dimM = dimg(x). Now since ¢|y is a diffeomorphism onto its image, we
deduce that the manifold ¢ (M) has dimension dimq (x). By continuity of ¢, we have ¢ (x) € cl¢(M). Hence,

dimrged) ¢(X) > d1m¢(M) = dlmQ (X),
as we needed to show. 0O

Proposition 4.8. Let Q C R" x R" be a semi-algebraic set and suppose that Q has local dimension n at a point (x, y). Consider
the following parametric system, parametrized by matrices A € R™" and vectors b € R".

PA,b): (x,y) €Q,
Ax+y=0D.

Define the solution set, S(A, b), to be the set of all pairs (x, y) solving P(A, b). Suppose that we have (x,y) € S(A, b), for some
matrix A and vector b. Fix some precision parameter ¢ > 0, and let 2 C R™" x R" be the set of parameters (A, b), for which
the solution set S(A, b) is finite and the intersection S(A, b) N B¢ (X, y) is nonempty. Then for any real number § > O, the set
£ N Bs(A, b) has dimension n> 4 n, and in particular has strictly positive measure.

Proof. By Proposition 4.3, for a generic matrix A € R**" the map
$2:Q — R",
*,y) > Ax+y,

is finite-to-one. Denote this generic collection of matrices by X. Let Q" := Q N B¢ (X, ¥). Observe that for each matrixA € X,
the restriction ¢, ¢ is still finite-to-one. For notational convenience, we will abuse notation slightly and we will always use
the symbol ¢, to mean the restriction of ¢4 to Q', that is we now have ¢,: Q" — R". o

Fix some arbitrary real numbers §, y > 0, and let Ns ,, (A, b) := Bs(A) x B, (b). We will show that the set £2 N N; ,, (A, b)
has dimension n? + n. To this effect, observe that the inclusion,

2N Ns, (A b) D{(Ab) eR”"" xR":Ae X NBs(A),b € rgega N B, (b))}, (11)
holds. The set on the right hand side of (11) is exactly the graph of the set-valued mapping,

F: ¥ NBs(A) = R",
A > rge ¢y ﬂBy(l_)).
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Thus, in order to complete the proof, it is sufficient to show that gph F has dimension n?> + n. We will do this by showing
that both the domain and the values of F have large dimension. ~
First, we analyze the domain of F. Consider any matrix A € X N Bs(A). We have

lpa(x, ¥) — bl = [(AX +y) — (AXx +y)| < |A — Al x|

So by shrinking 8, if necessary, we can assume |@4(%, ¥) — b| < y. Hence, we deduce

Pa(X,y) € rge pa N B, (b). (12)

In particular, we deduce that F is nonempty valued on X N Bs(A). Combining this with the fact that the set X is generic, we
obtain

dimdom F = dim ¥ N Bs(A) = n’. (13)

We now analyze the set F(A). Since the continuous map ¢, is finite-to-one and Q' has local dimension n at the point
(x,y), appealing to Proposition 4.7, we obtain

dimyge g, Pa(x,y) = n. (14)
From (12) and (14), we obtain

dim F(A) = dimrge ¢4 N B, (b) = n, (15)
for all matrices A € X N Bs(A). Finally combining (13), (15), and Proposition 2.19, we deduce

dimgphF = dimdomF + dim F(A) = n® + n,
thus completing the proof. O

Thus we have the following corollary.

Corollary 4.9. Let f:R" — R be a lower semicontinuous, semi-algebraic function. Consider the following parametric system,
parametrized by matrices A € R**" and vectors b € R".

P(A,b): yedf(x),
Ax+y=n>h.

Define the solution set, S(A, b), to be the set of all pairs (x, y) solving P(A, b). Suppose that we have (X, y) € S(A, b), for some
matrix A and vector b. Fix some precision parameter ¢ > 0, and let 2 C R™" x R" be the set of parameters (A, b), for which
the solution set S(A, b) is finite and the intersection S(A, b) N B.(x, y) is nonempty. Then for any real number § > 0, the set
£2 N Bs(A, b) has dimension n> + n, and in particular has strictly positive measure.

To clarify Corollary 4.9, consider a solution (X, y) to the system P(_,Z\,_l_o). Then the content of Corollary 4.9 is that under
small random (continuously distributed) perturbations to the pair (A, b), with positive probability the perturbed system
P(A, b) has a strictly positive and finite number of solutions arbitrarily close to (x, ¥).
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