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a b s t r a c t

Computing mountain passes is a standard way of finding critical points. We describe a
numerical method for finding critical points that is convergent in the nonsmooth case and
locally superlinearly convergent in the smooth finite dimensional case. We apply these
techniques to describe a strategy for addressing the Wilkinson problem of calculating the
distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate
critical points of mountain pass type to nonsmooth and metric critical point theory.
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1. Introduction

Computing mountain passes is an important problem in computational chemistry and in the study of nonlinear partial
differential equations. We begin with the following definition.

Definition 1.1. Let X be a topological space, and consider a, b ∈ X . For a function f : X → R, define a mountain pass
p∗

∈ Γ (a, b) to be a minimizer of the problem

inf
p∈Γ (a,b)

sup
0≤t≤1

f ◦ p(t).

Here, Γ (a, b) is the set of continuous paths p : [0, 1] → X such that p(0) = a and p(1) = b.

An important aim in computational chemistry is to find the lowest amount of energy to transition between two stable
states. If a and b represent two states and f maps the states to their potential energies, then the mountain pass problem
calculates this lowest energy. Early work on computing transition states includes that of Sinclair and Fletcher [1], and recent
work is reviewed by Henkelman et al. [2]. We refer the reader to this paper for further references in the computational
chemistry literature.

Perhaps more importantly, the mountain pass idea is also a useful tool in the analysis of nonlinear partial differential
equations. For a Banach space X , variational problems are problems (P) such that there exists a smooth functional J : X → R
whose critical points (pointswhere∇J = 0) are solutions of (P).Many partial differential equations are variational problems,
and critical points of J are ‘‘weak’’ solutions. In the landmark paper by Ambrosetti and Rabinowitz [3], the mountain pass
theorem gives a sufficient condition for the existence of critical points in infinite dimensional spaces. If an optimal path
for solving the mountain pass problem exists and the maximum along the path is greater than max(f (a), f (b)), then the
maximizer on the path is a critical point distinct from a and b. The mountain pass theorem and its variants provide the
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primary ways to establish the existence of critical points and to find critical points numerically. For more on the mountain
pass theorem and some of its generalizations, we refer the reader to [4].

In [5], Choi and McKenna proposed a numerical algorithm for the mountain pass problem by using an idea from [6] to
solve a semilinear partial differential equation. This is extended to finding solutions ofMorse index 2 (that is, the maximum
dimension of the subspace of X on which J ′′ is negative definite) in [7], and then to finding ones of higher Morse index by Li
and Zhou [8].

Li and Zhou [9], and Yao and Zhou [10] proved convergence results showing that their minimax method is sound for
obtaining weak solutions to nonlinear partial differential equations. Moré and Munson [11] proposed an ‘‘elastic string
method’’, and proved that the sequence of paths created by the elastic string method contains a limit point that is a critical
point.

The prevailing methods for numerically solving the mountain pass problem are motivated by finding a sequence of
paths (by discretization or otherwise) such that the maxima along these paths decrease to the optimal value. Indeed, many
methods in [2] approximate a mountain pass in this manner. As far as we are aware, only [12,13] deviate from this strategy.
We make use of a different approach by looking at the path connected components of the lower level sets of f instead.

One easily sees that l is a lower bound of the mountain pass problem if and only if a and b lie in two different path
connected components of lev≤l f . A strategy for finding an optimal mountain pass is to start with a lower bound l and keep
increasing l until the path connected components of lev≤l f containing a and b respectively coalesce at some point. However,
this strategy requires one to determine whether the points a and b lie in the same path connected component, which is not
easy. We turn to finding saddle points of mountain pass type, as defined below.

Definition 1.2. For a function f : X → R, a saddle point of mountain pass type x̄ ∈ X is a point such that there exists an open
set U such that x̄ lies in the closure of two path components of (lev<f (x̄) f ) ∩ U .

We shall refer to saddle points ofmountain pass type simply as saddle points. As an example, for the function f : R2
→ R

defined by f (x) = x21−x22, the point0 is a saddle point ofmountain pass type:we can chooseU = R2, a = (0, 1), b = (0, −1).
When f is C1, it is clear that saddle points are critical points. As we shall see later (in Propositions 6.1 and 6.2), saddle points
of mountain pass type can, under reasonable conditions, be characterized as maximal points on mountain passes, acting as
‘‘bottlenecks’’ between two components. In fact, if f is C2, the Hessians are nonsingular and several mild assumptions hold,
these bottlenecks are exactly critical points of Morse index 1. We refer the reader to the lecture notes of Ambrosetti [14].
Some of the methods in [2] actually find saddle points instead of solving the mountain pass problem.

We propose numerical methods for finding saddle points using the strategy suggested in Definition 1.2. We start with a
lower bound l and keep increasing l until the components of the level set lev≤l f ∩ U containing a and b coalesce, reaching
the objective of the mountain pass problem. The first method that we propose in Algorithm 2.1 is purely metric in nature.
One appealing property of thismethod is that calculations are now localized near the critical point andwe keep track of only
two points instead of an entire path. Our algorithm enjoys a monotonicity property: the distance between two components
decreases monotonically as the algorithm progresses, giving an indication of how close we are to the saddle point. In a
practical implementation, local optimality properties in terms of the gradients (or generalized gradients) can be helpful for
finding saddle points. Such optimality conditions are covered in Section 9.

It follows from the definitions that our algorithm, if it converges, converges to a saddle point. We then prove that any
saddle point is deformationally critical in the sense of metric critical point theory [15–17], and is Morse critical under
additional conditions. This implies in particular that any saddle point is Clarke critical in the sense of nonsmooth critical
point theory [18,19] based on nonsmooth analysis in the spirit of [20–23]. It seems that there are few existing numerical
methods for finding either critical points in ametric space or nonsmooth critical points. Currently, we are only aware of [24].

One of themain contributions of this paper is to give a secondmethod (in Section 3)which converges locally superlinearly
to a nondegenerate smooth critical point, i.e., critical points where the Hessian is nonsingular, in Rn. A potentially difficult
step in this second method is that where we have to find the closest point between two components of the level sets. While
the effort needed to perform this step accurately may be great, the purpose of this step is to make sure that the problem is
well aligned after this step. Moreover, this step need not be performed to optimality. In our numerical example in Section 8,
we were able to obtain favorable results without performing this step.

Our initial interest in the mountain pass problem came from computing the 2-norm distance of a matrix A to the closest
matrix with repeated eigenvalues. This is also known as the Wilkinson problem, and this value is the smallest 2-norm
perturbation that will make the eigenvalues of matrix A behave in a non-Lipschitz manner. Alam and Bora [25] showed
how the Wilkinson problem can be reduced to a global mountain pass problem. We do not solve the global mountain pass
problem associated with the Wilkinson problem, but we demonstrate that locally our algorithm converges quickly to a
smooth critical point of mountain pass type.

Outline: Section 2 illustrates a local algorithm for finding saddle points of mountain pass type, while Sections 3–5
are devoted to the statement, proof of convergence, and additional observations of a fast local algorithm for finding
nondegenerate critical points of Morse index 1 in Rn.

Section 6 discusses the relationship between mountain passes, saddle points, and critical points in the sense of metric
critical point theory and nonsmooth analysis, and does not depend on material in Sections 3–5.
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Fig. 2.1. Illustration of Algorithm 2.1.

Finally, Sections 7 and 8 illustrate the fast local algorithm in Section 3. Section 9 discusses optimality conditions for the
subproblem in the algorithm in Section 2.

Notation: As we will encounter situations where we want to find the square of the jth coordinate of the ith iterate of x,
we write x2i (j) in the proof of Theorem 4.8. In other parts, it will be clear from the context whether the i in xi is used as an
iteration counter or as a reference to the ith coordinate. Let Bd(0, r) be the ball with center 0 and radius r in Rd, and B̊d(0, r)
be the corresponding open ball.

2. A level set algorithm

We present a level set algorithm for finding saddle points. Assume that we have f : X → R, where (X, d) is a metric
space.

Algorithm 2.1 (Level Set Algorithm).A local bisectionmethod for approximating amountain pass from x0 to y0 for f |U , where
both x0 and y0 lie in some open path connected set U .

(1) Start with an upper bound u and a lower bound l for the objective of the mountain pass problem and i = 0.
(2) Solve the optimization problem

min d(x, y)
s.t. x ∈ S1, y ∈ S2

(2.1)

where S1 is the component of the level set

lev

≤
1
2 (l+u) f


∩ U that contains xi and S2 is the component that contains yi.

(3) If S1 and S2 are the same component, then 1
2 (l + u) is an upper bound; otherwise it is a lower bound. Update the upper

and lower bounds accordingly. In the case where the lower bound is changed, increase i by 1, and let xi and yi be the
minimizers of (2.1). For future discussions, let li be the value of l corresponding to xi and yi. Repeat step 2 until xi and yi
are sufficiently close.

(4) If an actual approximate mountain pass is desired, take a path pi : [0, 1] → U ∩ (lev≤u f ) connecting the points

x0, x1, . . . , xi−2, xi−1, xi, yi, yi−1, yi−2, . . . , y1, y0.

Step (3) is illustrated in Fig. 2.1.
To start the algorithm, an upper bound u can be taken to be the maximum of any path from x0 to y0, while a lower bound

can be the maximum of f (x0) and f (y0). In fact, in step (3), we may update the upper bound u to be the maximum along the
line segment joining xi and yi if it is a better upper bound.

In practice, one need not solve subproblem (2.1) in step 2 too accurately, as it might bemore profitable tomove on to step
3.While theory demands the global optimizers for subproblem (2.1), an implementation of Algorithm 2.1 can only find local
optimizers, which is not sufficient for the global mountain pass problem, but can be successful for the purpose of finding
saddle points. The optimality conditions in terms of gradients (or generalized gradients) can be helpful for characterizing
local optimality (see Section 9). Notice that the saddle point property is local. If xi and yi converge to a common limit, then
it is clear from the definitions that the common limit is a saddle point.

Another issue with subproblem (2.1) in step 2 is that minimizers may not exist. For example, the sets S1 and S2 may not
be compact. We now discuss how convergence to a critical point in Algorithm 2.1 can fail in the finite dimensional case.

The Palais–Smale condition is important in nonlinear analysis, and is often a necessary condition in the smooth and
nonsmooth mountain pass theorems and other critical point existence theorems. We refer the reader to [26–30] for more
details. We recall its definition.
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Definition 2.2. Let X be a Banach space and f : X → R be a C1 functional. We say that a sequence {xi}∞i=1 ⊂ X is a
Palais–Smale sequence if {f (xi)}∞i=1 is bounded and f ′(xi) → 0, and f satisfies the Palais–Smale condition if any Palais–Smale
sequence admits a convergent subsequence.

For nonsmooth f , the condition f ′(xi) → 0 is infx∗i ∈∂ f (xi)
x∗

i

 → 0 instead.

In the absence of the Palais–Smale condition, Algorithm 2.1 may fail to converge because the sequence {(xi, yi)}∞i=1 need
not have a limit point of the form (z̄, z̄), or the sequence {(xi, yi)}∞i=1 need not even exist. The examples below document the
possibilities.

Example 2.3. (a) Consider f : R2
→ R defined by f (x, y) = e−x

− y2. Here, the distance between the two components of
the level sets is zero for all lev≤c f , where c < 0, and xi and yi do not exist. The sequence {(i, 0)}∞i=1 is a Palais–Smale
sequence but does not converge.

(b) For f (x, y) = e−2x
− y2e−x, xi and yi exist, but both {xi}∞i=1 and {yi}∞i=1 do not have finite limits. Again, {(i, 0)}∞i=1 is a

Palais–Smale sequence that does not converge.

It is possible that {xi}∞i=1 and {yi}∞i=1 have limit points but not a common limit point. To see this, consider the example
f : R → R defined by

f (x) =

x if x ≤ −1
−1 if − 1 ≤ x ≤ 1
−x if x ≥ 1.

The set lev≤−1 f is path connected, but the set cl(lev<−1 f ) is not path connected. Any point in the set (lev≤−1 f ) \

cl(lev<−1 f ) = (−1, 1) is a local minimum, and hence a critical point.

3. A locally superlinearly convergent algorithm

In this section,we propose a locally superlinearly convergent algorithm for themountain pass problem for smooth critical
points in Rn. For this section, we take X = Rn. Like in Algorithm 2.1 earlier, we keep track of only two points in the space
Rn instead of a path. Our fast locally convergent algorithm does not require one to calculate the Hessian. Furthermore,
we maintain upper and lower bounds that converge superlinearly to the critical value. The numerical performance of this
method will be illustrated in Section 8.

In Algorithm 3.1, we can assume that the endpoints x0 and y0 satisfy f (x0) = f (y0). Otherwise, if f (x0) < f (y0) say,
replace x0 by the point x′

0 closest to x0 on the line segment [x0, y0] such that f (x′

0) = f (y0).

Algorithm 3.1 (Fast Local Level Set Algorithm). Find the saddle point between points x0 and y0 for f : Rn
→ R. Assume that

the objective of the mountain pass problem between x0 and y0 is greater than f (x0), and f (x0) = f (y0). Let U be a convex
set containing x0 and y0.

(1) Given points xi and yi, find zi as follows:
(a) Replace xi and yi by x̃i and ỹi, where x̃i and ỹi are minimizers of the problem

min
x,y

|x − y|

s.t. x in same component as xi in (lev≤ f (xi) f ) ∩ U
y in same component as yi in (lev≤ f (xi) f ) ∩ U .

(b) Find a minimizer of f on Li ∩ U , say zi. Here Li is the affine space orthogonal to xi − yi passing through 1
2 (xi + yi).

(2) Find the point furthest away from xi on the line segment [xi, zi], which we call xi+1, such that f (x) ≤ f (zi) for all x in the
line segment [xi, xi+1]. Do the same to find yi+1.

(3) Increase i; repeat steps 1 and 2 until |xi − yi| is small, or until the valueMi − f (zi), whereMi := maxx∈[xi,yi] f (x), is small.
(4) If an actual path is desired, take a path pi : [0, 1] → X lying in lev≤Mi f connecting the points

x0, x1, . . . , xi−2, xi−1, xi, yi, yi−1, yi−2, . . . , y1, y0.

As we will see in Propositions 4.3 and 5.4, a unique minimizing pair (x̃i, ỹi) in step 1(a) exists under added conditions.
Furthermore, Proposition 4.5 implies that a unique minimizer of f on Li ∩ U exists under added conditions in step 1(b).

To motivate step 1(b), consider any path from xi to yi in U that lies wholly in U . Such a path has to pass through some
point of Li ∩ U , so the maximum value of f on the path is at least the minimum of f on Li ∩ U .

Step 1(a) is analogous to step 2 of Algorithm 2.1. Algorithm 3.1 can be seen as an improvement of Algorithm 2.1: the
bisection algorithm in Algorithm 2.1 gives us a reliable way of finding the critical point, and step 1(b) in Algorithm 3.1
reduces the distance between the components of the level sets as quickly as possible.

In practice, step 1(a) is difficult, and is performed only when the algorithm runs into difficulties. In fact, this step was not
performed in our numerical experiments in Section 8. However, we can construct simple functions forwhich the affine space
Li does not separate the two components containing xi and yi in (lev≤ f (xi) f ) ∩ U in step 1(b) if step 1(a) was not performed.
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In the minimum distance problem in step 1(a), notice that if f is C1 and the gradients of f at a pair of points are nonzero
and do not point in opposite directions, then in principle we can perturb the points along paths that decrease the distance
between them while not increasing their function values. Of course, a good approximation of a minimizing pair may be
hard to compute in practice: existing path-based algorithms for finding mountain passes face analogous computational
challenges. One may employ the heuristic in Remark 5.7 for addressing this problem.

In step 2, continuity of f and p tells us that f (xi+1) = f (zi). We shall see in Theorem 4.8 that under added conditions,
{f (xi)}i is an increasing sequence that converges to the critical value f (x̄). Furthermore, Propositions 4.5 and 5.3 state that
under added conditions, the {Mi}i are upper bounds on f (x̄) that converge R-superlinearly to f (x̄), where R-superlinear
convergence is defined as follows.

Definition 3.2. A sequence in R converges R-superlinearlyto zero if its absolute value is bounded by a superlinearly
convergent sequence.

4. Superlinear convergence of the local algorithm

When f : Rn
→ R is a quadraticwhoseHessian has one negative eigenvalue and n−1 positive eigenvalues, Algorithm3.1

converges to the critical point in one step. One might expect that if f is C2, then Algorithm 3.1 will converge quickly. In this
section, we will prove Theorem 4.8 on the superlinear convergence of Algorithm 3.1.

Recall that the Morse index of a critical point is the maximum dimension of a subspace on which the Hessian is negative
definite, and a critical point is nondegenerate if its Hessian is invertible, and degenerate otherwise. In the smooth finite
dimensional case, the Morse index equals the number of negative eigenvalues of the Hessian. If a function f : Rn

→ R is C2

in a neighborhood of a nondegenerate critical point x̄ of Morse index 1, we can readily make the following assumptions.

Assumption 4.1. Assume that x̄ = 0 and f (0) = 0, and the Hessian H = H(0) is a diagonal matrix with entries
a1, a2, . . . , an−1, an in decreasing order, where an is negative and an−1 is the smallest positive eigenvalue.

Another assumption that we will use quite often in this section and the next is on the local approximation of f near 0.

Assumption 4.2. For δ ∈ (0,min{an−1, −an}), assume that θ > 0 is small enough so thatf (x) −

n−
j=1

ajx2(j)

 ≤ δ |x|2 for all x ∈ B(0, θ).

This particular choice of θ gives a region B(0, θ) where Fig. 4.1 is valid. We shall use B̊ to denote the open ball.
Here is our first result on step 1(a) of Algorithm 3.1.

Proposition 4.3. Suppose that f : Rn
→ R is C2, and x̄ is a nondegenerate critical point of Morse index 1 such that f (x̄) = c. If

θ > 0 is sufficiently small, then for any ϵ > 0 (depending on θ ) sufficiently small,

(1) (lev≤c−ϵ f ) ∩ B̊(x̄, θ) has exactly two path connected components, and
(2) there is a pair (x̃, ỹ), where x̃ and ỹ lie in distinct components of (lev≤c−ϵ f ) ∩ B̊(x̄, θ), such that

x̃ − ỹ
 is the distance

between the two components in (lev≤c−ϵ f ) ∩ B̊(x̄, θ).

Proof. Suppose that Assumption 4.1 holds. Choose some δ ∈ (0,min{an−1, −an}) and a corresponding θ > 0 such that
Assumption 4.2 holds. A simple bound on f (x) on B(0, θ) is therefore

n−
j=1

(aj − δ)x2(j) ≤ f (x) ≤

n−
j=1

(aj + δ)x2(j). (4.1)

So if ϵ is small enough, the level set S := lev≤−ϵ f satisfies

S+ ∩ B(0, θ) ⊂ S ∩ B(0, θ) ⊂ S− ∩ B(0, θ),

where

S+ :=


x

 n−
j=1

(aj + δ)x2(j) ≤ −ϵ


,

S− :=


x

 n−
j=1

(aj − δ)x2(j) ≤ −ϵ


,

and S+ ∩B(0, θ) is nonempty. Fig. 4.1 shows a two-dimensional cross section of the sets S+ and S− through the critical point
0 and the closest points between components in S+ and S−.
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Fig. 4.1. Local structure of the saddle point.

Step 1: Calculate variables in Fig. 4.1.
The two points in distinct components of S+ closest to each other are the points


0, ±


ϵ

−an−δ


, and one easily calculates

the values of b and c (which are the distances between 0 and S−, and between 0 and S+ respectively) in the diagram to be
ϵ

−an+δ
and


ϵ

−an−δ
. Thus the distance between the two components of S is at most 2


ϵ

−an−δ
. The points in S thatminimize

the distance between the components must lie in two cylinders C1 and C2 defined by

C1 := Bn−1(0, a) × [b − 2c, −b] ⊂ Rn−1
× R,

C2 := Bn−1(0, a) × [b, 2c − b] ⊂ Rn−1
× R, (4.2)

for some a > 0. In other words, C1 and C2 are cylinders with spherical base of radius a such that

(S− \ S+) ∩

Rn−1

× [b − 2c, 2c − b]

∩ B(0, θ) ⊂ C1 ∪ C2.

They are represented as the left and right rectangles in Fig. 4.1.
We now find a value of a. We can let x(n) = 2c − b, and we need

n−1−
j=1

(aj − δ)x2(j) + (an − δ)x2(n) ≤ −ϵ

⇒

n−1−
j=1

(aj − δ)x2(j) + (an − δ)


2


ϵ

−an − δ
−


ϵ

−an + δ

2

≤ −ϵ.

Continuing the arithmetic gives
n−1−
j=1

(aj − δ)x2(j) ≤ ϵ


−1 − (an − δ)


4

−an − δ
+

1
−an + δ

−
4

√
−an − δ

√
−an + δ


≤ ϵ


−1 − (an − δ)


4

−an − δ
+

1
−an + δ

−
4

−an + δ


=

8ϵδ
−an − δ

.

The radius is maximized when x(1) = x(2) = · · · = x(n − 2) = 0 and x(n − 1) = 2


2ϵδ
(an−1−δ)(−an−δ)

, which gives our value
of a.

Step 2: (lev≤−ϵ f ) ∩ B̊(0, θ) has exactly two components if ϵ is small enough.
Note that (lev≤−ϵ f ) ∩ B(0, θ) does not intersect the subspace L′

:= {x | x(n) = 0}, since f (x) ≥ 0 for all x ∈ L′
∩ B(0, θ).

We proceed to show that

U< := {x | x(n) < 0} ∩ B̊(0, θ)
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contains exactly one path connected component if ϵ is small enough. A similar statement for U> defined in a similar way
will allow us to conclude that (lev≤−ϵ f ) ∩ B̊(0, θ) has exactly two components.

Consider two points v1, v2 in (lev≤−ϵ f )∩U<. We want to find a path connecting v1 and v2 and contained in (lev≤−ϵ f )∩

U<. We may assume that v1(n) ≤ v2(n) < 0. By the continuity of the Hessian, assume that θ is small enough that for all
x ∈ B(0, θ), the top left principal submatrix of H(x) corresponding to the first n − 1 elements is positive definite. Consider
the subspace L′(α) := {x | x(n) = α}. The positive definiteness of the submatrix of H(x) on B(0, θ) tells us that f is strictly
convex on B(0, θ) ∩ L′(α).

If v1(n) = v2(n), then the line segment connecting v1 and v2 lies in (lev≤−ϵ f ) ∩ L′(v1(n)) ∩ B̊(0, θ) by the convexity of
f on L′(v1(n)) ∩ B̊(0, θ). Otherwise, assume that v1(n) < v2(n).

Here is a lemma that we will need for the proof.

Lemma 4.4. Suppose Assumption 4.1 holds. We can reduce θ > 0 and δ > 0 if necessary so that Assumption 4.2 is satisfied, and
the nth component of ∇f (x) is positive for all x ∈ (lev≤0 f ) ∩ B(0, θ) ∩ {x | x(n) < 0}.

Proof. We first define S̃− by

S̃− :=


x | (an−1 − δ)

n−1−
j=1

x2(j) + (an − δ)x2(n) ≤ 0


.

It is clear that (an−1 − δ)
∑n−1

j=1 x2(j) + (an − δ)x2(n) ≤ f (x) for all x ∈ B(0, θ), so (lev≤0 f ) ∩ B(0, θ) ⊂ S̃− ∩ B(0, θ).
We now use the expansion ∇f (x) = H(0)x + o(|x|), and prove that the nth component of ∇f (x) is negative for all

x ∈ S̃− ∩ B(0, θ) ∩ {x | x(n) < 0}. We can reduce θ so that |∇f (x) − H(0)x| < δ |x| for all x ∈ B(0, θ). Note that if x ∈ S̃−,
then

(an−1 − δ)

n−1−
j=1

x2(j) + (an − δ)x2(n) ≤ 0

⇒ (an−1 − δ) |x|2 + (an − an−1)x2(n) ≤ 0

⇒ |x| ≤


an−1 − an
an−1 − δ

(−x(n)) .

The nth component of ∇f (x) is bounded from below by

anx(n) − δ |x| ≤ anx(n) + δ


an−1 − an
an−1 − δ

x(n).

Provided that δ is small enough, the term above is positive since x(n) < 0. �

We now return to showing that there is a path connecting v1 and v2. Note that S+ ∩ B̊(0, θ) ∩ {x | x(n) < 0} is a
convex set. (To see this, note that S+ ∩ {x | x(n) < 0} can be rotated so that it is the epigraph of a convex function.) Since
S+ ∩ B̊(0, θ) ⊂ (lev≤−ϵ f ) ∩ B̊(0, θ), the open line segment connecting the points (0, −θ), (0, −c) ∈ Rn−1

× R lies in
(lev≤−ϵ f ) ∩ B̊(0, θ). If −θ < v1(n) < v2(n) ≤ −c , the piecewise linear path connecting v2 to (0, v2(n)) to (0, v1(n)) to v1
lies in (lev≤−ϵ f ) ∩ B̊(0, θ).

In the case when v2(n) > −c , we see that v2 must lie in C1. Lemma 4.4 tells us that the line segment joining v2 and
v2 + (0, −c − v2(n)) lies in (lev≤−ϵ f ) ∩ B̊(0, θ). This allows us to find a path connecting v2 to v1.

Step 3: x̃ and ỹ lie in B̊(0, θ).
The points x̃ and ỹmust lie in C1 and C2 respectively, and both C1 and C2 lie in B̊(0, θ) if ϵ is small enough. Therefore, we

canminimize over the compact sets (lev≤−ϵ f )∩C1 and (lev≤−ϵ f )∩C2, which tells us that aminimizing pair (x̃, ỹ) exist. �

In fact, under the assumptions of Proposition 4.3, x̃ and ỹ are unique, but all we need in the proof of Proposition 4.5 is
that x̃ and ỹ lie in the sets C1 and C2 defined by (4.2) respectively, represented as rectangles in Fig. 4.1. We defer the proof of
uniqueness to Proposition 5.4.

Our next result is on a bound for possible locations of zi in step 1(b).

Proposition 4.5. Suppose that f : Rn
→ R is C2, and x̄ is a nondegenerate critical point of Morse index 1 such that f (x̄) = c. If

θ is small enough, then for all small ϵ > 0 (depending on θ ),

(1) two closest points of the two components of (lev≤c−ϵ f ) ∩ B̊(x̄, θ), say x̃ and ỹ, exist,
(2) for any such points x̃ and ỹ, f is strictly convex on L ∩ B̊(x̄, θ), where L is the orthogonal bisector of x̃ and ỹ, and
(3) f has a unique minimizer on L ∩ B̊(x̄, θ); furthermore,minL∩B̊(0,θ) f ≤ f (x̄) ≤ max[x̃,ỹ] f .
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Proof. Suppose that Assumption 4.1 holds, and choose δ ∈ (0,min{an−1, −an}). Suppose that θ > 0 is small enough that
Assumption 4.2 holds. Throughout this proof, we assume that all vectors accented with a hat ‘∧’ are of Euclidean length 1.
It is clear that f (x̃) = f (ỹ) = −ϵ. Point (1) of the result comes from Proposition 4.3. We first prove the following lemma.

Lemma 4.6. Suppose Assumptions 4.1 and 4.2 hold. If θ > 0 is small enough, then for all small ϵ > 0 (depending on θ ), two
closest points of the two components of (lev≤−ϵ f ) ∩ B̊(0, θ), say x̃ and ỹ, exist. Let L be the perpendicular bisector of x̃ and ỹ.
Then

(lev≤0 f ) ∩ L ∩ B̊(0, θ) ⊂ Bn−1


0, α


(−an + δ)

(an−1 − δ)


× (−α, α) ,

where α = δ


ϵ

−an


8

an−1
+

2
−an


+ o(δ).

Proof. By Proposition 4.3, the points x̃ and ỹ must exist. We proceed to prove the rest of Lemma 4.6.
Step 1: Calculate the remaining values in Fig. 4.1.
We calculated the values of a, b and c in step 2 of the proof of Proposition 4.3, and we proceed to calculate the rest of the

variables in Fig. 4.1. The middle rectangle in Fig. 4.1 represents the possible locations of midpoints of points in C1 and C2,
and is a cylinder as well. We call this setM . The radius of this cylinder is the same as that of C1 and C2, and the width of this
cylinder is 4(c − b), which gives an o(δ) approximation:

4(c − b) = 4


ϵ

−an − δ
−


ϵ

−an + δ



= 4


−anϵ
(−an − δ)(−an + δ)


1 +

δ

−an
−


1 −

δ

−an



= 4


ϵ

−an


1 +

δ

−2an


−


1 −

δ

−2an


+ o(δ)

= 4


ϵ

−an

δ

−an
+ o(δ).

These calculations suffice for the calculations in step 2 of this proof.
Step 2: Set up an optimization problem for the bound on (lev≤0 f ) ∩ L ∩ B̊(0, θ).
From the values of a and b calculated previously, we deduce that a vector c2 − c1, with ci ∈ Ci, can be scaled so that it is of

the form

γ a

b v̂1, 1

, where v̂1 ∈ Rn−1 is of norm 1 and 0 ≤ γ ≤ 1 (i.e., the norm corresponding to the first n−1 coordinates

is at most a
b ). These are possible normals for L, the perpendicular bisector of x̃ and ỹ. The formula for a

b is

a
b

= 2


2ϵδ

(an−1 − δ)(−an − δ)
÷


ϵ

−an + δ

= 2


2δ(−an + δ)

(an−1 − δ)(−an − δ)
.

So we can represent a normal of the affine space L as
2γ1


2δ(−an + δ)

(an−1 − δ)(−an − δ)
v̂1, 1


for some 0 ≤ γ1 ≤ 1. (4.3)

We now proceed to bound the minimum of f on all possible perpendicular bisectors of c1 and c2 within B̊(0, θ), where
c1 ∈ C1 and c2 ∈ C2. We find the largest value of α such that:

• There is a point of the form (v2, α) lying in S̃−, where

S̃− :=


x | (an−1 − δ)

n−1−
j=1

x2(j) + (an − δ)x2(n) ≤ 0


⊂ Rn−1

× R.

• (v2, α) ∈ L̃ for some affine space L̃ passing through a point p ∈ M and having a normal vector of the form in Formula
(4.3).

The set S̃− is the same as that defined in the proof of Lemma 4.4. Note that S̃− ∩ B̊(0, θ) ⊃ (lev≤0 f ) ∩ B̊(0, θ), and this
largest value of α is an upper bound on the absolute value of the nth coordinate of elements in (lev≤0 f ) ∩ L ∩ B̊(0, θ).
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Step 3: Solving for α.
For a point (v2, α) ∈ S̃−, where v2 = (x(1), x(2), . . . , x(n − 1)) ∈ Rn−1, we have

(an−1 − δ)

n−1−
j=1

x2(j) + (an − δ)α2
≤ 0,

⇒ |v2|2 =

n−1−
j=1

x2(j)

≤
(−an + δ)

(an−1 − δ)
α2,

⇒ |v2| ≤


(−an + δ)

(an−1 − δ)
α.

Therefore, we can write (v2, α) as
γ2


(−an + δ)

(an−1 − δ)
αv̂2, α


, (4.4)

where v̂2 ∈ Rn−1 is a vector of unit norm, and 0 ≤ γ2 ≤ 1. We can assume that p has coordinates
2γ3


2ϵδ

(an−1 − δ)(−an − δ)
v̂3, 2γ4


ϵ

−an

δ

−an
+ o(δ)


,

where v̂3 ∈ Rn−1 is some vector of unit norm, and 0 ≤ γ3, γ4 ≤ 1. Note that the nth component is half the width of M .
Hence a possible tangent on L̃ is

γ1


(−an + δ)

(an−1 − δ)
αv̂2, α


−


2γ3


2ϵδ

(an−1 − δ)(−an − δ)
v̂3, 2γ4


ϵ

−an

δ

−an
+ o(δ)


.

To simplify notation, note that we only require an O(δ) approximation of α; we can take the terms like−an + δ and−an − δ
to be −an + O(δ) and so on. The dot product of the above vector and the normal of the affine space L calculated in Formula
(4.3) must be zero, which after some simplification gives

γ2


−an
an−1

+ O(δ)


αv̂2 −


2γ3


2ϵδ

an−1(−an)
+ O(δ3/2)


v̂3, α −


2γ4


ϵ

−an

δ

−an
+ o(δ)



×


2γ1


2δ
an−1

+ O(δ3/2)


v̂1, 1


= 0.

At this point, we remind the reader that theO(δk) termsmean that there exists some K > 0 such that if δ were small enough,
we could find terms t1 to t3 such that |ti| < Kδk and the formula above is satisfied by ti in place of the O(δk) terms. Further
arithmetic gives

4γ1γ3


2δ
an−1


2ϵδ

an−1(−an)
(v̂3 · v̂1) + 2γ4


ϵ

−an

δ

−an
+ o(δ)

= α


1 + 2γ1γ2


2δ
an−1


−an
an−1

(v̂2 · v̂1) + o(δ3/2)


= α(1 + O(

√
δ)).

To find an upper bound forα, it is clear thatwe should take γ1 = γ3 = γ4 = 1 and v̂3 ·v̂1 = 1. TheO(
√

δ) term is superfluous,
and this simplifies to give

α ≤ δ


ϵ

−an


8

an−1
+

2
−an


+ o(δ). (4.5)

We could find the minimum possible value of α by these same series of steps and show that the absolute value would be
bounded above by the same bound. This ends the proof of Lemma 4.6. �
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It is clear that the minimum value of f on L ∩ B̊(0, θ) is at most 0, since L intersects the axis corresponding to the nth
coordinate and f is nonpositive there. Therefore the set (lev≤0 f ) ∩ L ∩ B̊(0, θ) is nonempty, and f has a local minimizer on
L ∩ B̊(0, θ).

We now state and prove our second lemma that will conclude the proof of Proposition 4.5.

Lemma 4.7. Let L be the perpendicular bisector of x̃ and ỹ as defined in point (1) of Proposition 4.5 with x̄ = 0. If δ and θ are
small enough, satisfying Assumptions 4.1 and 4.2, then f |L∩B(0,θ) is strictly convex.

Proof. The lineality space of L, written as lin(L), is the space of vectors orthogonal to x̃− ỹ. We can infer from Formula (4.3)
that x̃ − ỹ is a scalar multiple of a vector of the form (w, 1), where w ∈ Rn−1 satisfies |w| → 0 as δ → 0. We consider
a vector v ∈ lin(L) orthogonal to (w, 1) that can be scaled so that v = (w̃, 1), where (w, 1) · (w̃, 1) = 0, which gives
w · w̃ = −1. The Cauchy–Schwarz inequality gives us

|w̃| |w| ≥ |w̃ · w|

= 1

⇒ |w̃| ≥ |w|
−1 .

So

v⊤H(p)v
v⊤v

=
v⊤H(0)v

v⊤v
+

v⊤(H(p) − H(0))v
v⊤v

=

n−1∑
j=1

ajv2(j) + an

n−1∑
j=1

v2(j) + 1
+

v⊤(H(p) − H(0))v
v⊤v

≥

an−1

n−1∑
j=1

v2(j) + an

n−1∑
j=1

v2(j) + 1  
(1)

+
v⊤(H(p) − H(0))v

v⊤v  
(2)

.

Since
∑n−1

j=1 v2(j) = |w̃|
2

→ ∞ as |w| → 0, the limit of term (1) is an−1, so there is an open set B(0, θ) containing 0 such

that v⊤H(p)v
v⊤v

> 1
2an−1 for all v ∈ lin(L) ∩ {x | x(n) = 1} and p ∈ B(0, θ). By the continuity of the Hessian, we may reduce

θ if necessary so that ‖H(p) − H(0)‖ < 1
2an−1 for all p ∈ B(0, θ). Thus v⊤H(p)v

v⊤v
> 0 for all p ∈ B(0, θ) and v ∈ lin(L) ∩

{x | x(n) = 1} if δ is small enough.
The vectors of the form v = (w̃, 0) do not present additional difficulties as the corresponding term (1) is at least an−1.

This proves that theHessianH(p) restricted to lin(L) is positive definite, and hence the strict convexity of f on L∩B̊(0, θ). �

Since f has a local minimizer in L ∩ B̊(0, θ) and is strictly convex there, we have (2) and the first part of part (3). The
inequality f (x̄) ≤ max[x̃,ỹ] f follows easily from the fact that the line segment [x̃, ỹ] intersects the set {x | x(n) = 0}, on
which f is nonnegative. �

Here is our theorem on the convergence of Algorithm 3.1.

Theorem 4.8. Suppose that f : Rn
→ R is C2 in a neighborhood of a nondegenerate critical point x̄ of Morse index 1. If θ > 0

is sufficiently small and x0 and y0 are chosen such that

(a) x0 and y0 lie in the two different components of (lev≤ f (x0) f ) ∩ B̊(x̄, θ),
(b) f (x0) = f (y0) < f (x̄),

then Algorithm 3.1with U = B̊(x̄, θ) generates a sequence of iterates

x̃i

i and


ỹi

i lying in B̊(x̄, θ) such that the function values

f (x̃i)

i and


f (ỹi)


i converge to f (x̄) superlinearly, and the iterates


x̃i

i and


ỹi

i converge to x̄ superlinearly.

Proof. As usual, suppose that Assumption 4.1 holds, and δ and θ are chosen such that Assumption 4.2 holds.
Step 1: Linear convergence of f (x̃i) to the critical value f (x̄).
Let ϵ = f (x̃i). The next iterate xi+1 satisfies f (xi+1) = f (zi), and is bounded from below by

f (xi+1) ≥ (an − δ)α2
= −ϵδ2


8

an−1
+

2
−an

2

+ o(δ2),
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where α is the value calculated in Lemma 4.6. The ratio between the previous function value and the next function value is
at most

ρ(δ) := δ2


8
an−1

+
2

−an

2

+ o(δ2).

This ratio goes to 0 as δ ↘ 0, so we can choose some δ small enough that ρ < 1
2 . We can choose θ corresponding to

the value of δ satisfying Assumption 4.2. This shows that the convergence to 0 of the function values f (x̃i+1) = f (xi+1) in
Algorithm3.1 is linear provided x0 and y0 lie inB(0, θ) and ϵ is small enough by Proposition 4.3.We can reduce θ if necessary
so that f (x) ≥ −ϵ for all x ∈ B(0, θ), so the condition on ϵ does not present difficulties.

Step 2: Superlinear convergence of f (x̃i) to the critical value f (x̄).
Choose a sequence {δk}k such that δk ↘ 0 monotonically. We can choose, corresponding to δk, θk satisfying

Assumption 4.2. Since {x̃i}i and {ỹi}i converge to 0, for any k ∈ Z+, we can find some i∗ ∈ Z+ such that the cylinders
C1 and C2 constructed in Fig. 4.1 corresponding to ϵi = −f (x̃i) and δ = δ1 lie wholly in B(0, θk) for all i > i∗. As remarked
in step 3 of the proof of Proposition 4.3, x̃i and ỹi must lie inside C1 and C2, so we can take δ = δk for the ratio ρ. This means
that |f (x̃i+1)|

|f (x̃i)|
≤ ρ(δk) for all i > i∗. As ρ(δ) ↘ 0 as δ ↘ 0, this means that we have superlinear convergence of the f (x̃i) to

the critical value f (x̄).
Step 3: Superlinear convergence of x̃i to the critical point x̄.
We now proceed to prove that the distance between the critical point 0 and the iterates decreases superlinearly by

calculating the value |x̃i+1|

|x̃i|
, or alternatively |x̃i+1|

2

|x̃i|
2 . The value

x̃i satisfies x̃i2 ≥ b2 =
ϵ

−an+δ
. To find an upper bound forx̃i+1

2, it is instructive to look at an upper bound for
x̃i2 first. As can be deduced from Fig. 4.1, an upper bound for

x̃i2 is
the square of the distance between 0 and the furthest point in C1, which is

(2c − b)2 + a2 = (c + (c − b))2 + a2

=
ϵ

−an − δ
+ 8

ϵδ

(−an)2
+

8ϵδ
(an−1 − δ)(−an − δ)

+ o(δ).

This means that an upper bound for
x̃i+1

2 is

δ2


8
an−1

+
2

−an

2 
ϵ

−an − δ
+

8ϵδ
−an


1

−an
+

1
(an−1 − δ)


+ o(δ2).

From this point, one easily sees that as i → ∞, δ → 0, and |x̃i+1|
2

|x̃i|
2 → 0. This gives the superlinear convergence of the

distance between the critical point and the iterates x̃i that we seek. �

5. Further properties of the local algorithm

In this section, we take note of some interesting properties of Algorithm 3.1. First, we show that it is easy to find xi+1 and
yi+1 in step 2 of Algorithm 3.1.

Proposition 5.1. Suppose that the conditions in Theorem 4.8 hold. Consider the sequence of iterates {xi}i and {yi}i generated
by Algorithm 3.1. If i is large enough, then either xi+1 = zi or yi+1 = zi in step 2 of Algorithm 3.1.
Proof. Let p̃ : [0, 1] → Rn denote the piecewise linear path connecting xi to zi to yi. It suffices to prove that along p̃, the
function f increases to a maximum, and then decreases. Suppose Assumptions 4.1 and 4.2 hold. The cylinders C1 and C2 in
Fig. 4.1 are loci for xi and yi. We assume that xi lies in C2 in Fig. 4.1. The calculations in (4.4) in Lemma 4.6 tell us that zi can
be written as

(−an + δ)

(an−1 − δ)
αλ1v̂2, λ2α


∈ Rn−1

× R,

where 0 < λ1 < λ2 ≤ 1,
v̂2 = 1 and α = δ


ϵ

−an


8

an−1
+

2
−an


+ o(δ) by (4.5). Therefore, xi − zi can be written as

v1,


ϵ

−an + δ
+ o(

√
δϵ)


,

where v1 ∈ Rn−1 satisfies

|v1| ≤


(−an + δ)

(an−1 − δ)
α + a

= O(
√

ϵδ),
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and a =


2ϵδ

(an−1−δ)(−an−δ)
is as calculated in the proof of Proposition 4.3. Thismeans that the unit vector with direction xi−zi

converges to the nth elementary vector as δ ↘ 0. By appealing to Hessians as is done in the proof of Lemma 4.7, we see
that the function f is strictly concave in the line segment [xi, zi] if i is large enough. Similarly, f is strictly concave in the line
segment [yi, zi] if i is large enough.

Next, we prove that the function f has only one local maximizer in p̃([0, 1]). In the case where ∇f (zi) = 0, the concavity
of f on the line segments [xi, zi] and [yi, zi] tells us that zi is the unique maximizer on p̃([0, 1]). We now look at the case
where ∇f (zi) ≠ 0. Since zi is the minimizer on a subspace with normal xi − yi, ∇f (zi) is a (possibly negative) multiple of
xi − yi. This means that ∇f (zi) · (xi − zi) has a different sign than ∇f (zi) · (yi − zi). In other words, the map t → f (p̃(t))
increases then decreases. This concludes the proof of the proposition. �

Remark 5.2. Note that in Algorithm 3.1, all we need in step 1 is a good lower bound of the critical value. We can exploit
convexity as proved in Lemma 4.7 and use cutting plane methods to attain a lower bound for f on Li ∩ B(x̄, θ).

Recall from Proposition 4.5 thatMi is a sequence of upper bounds of the critical value f (x̄). While it is not even clear that
Mi is monotonically decreasing, we can prove the following convergence result onMi.

Proposition 5.3. Suppose that f : Rn
→ R is C2 in a neighborhood of a nondegenerate critical point x̄ of Morse index 1, and

the neighborhood U of x̄ and the points x0 and y0 are chosen satisfying the conditions in the statement of Theorem 4.8. Then
in Algorithm 3.1, Mi := max[xi,yi] f converges R-superlinearly to the critical value.

Proof. Suppose Assumption 4.1 holds. An upper bound of the critical value of the saddle point is obtained by finding the
maximum along the line segment joining two points in C1 and C2, which is bounded from above by

(a1 + δ)a2 = (a1 + δ)
8ϵδ

(an−1 − δ)(−an − δ)
.

Amore detailed analysis by using cylinderswith ellipsoidal base instead of circular base tell us that themaximum is bounded
above by 8ϵδ

(−an−δ)
instead. If δ > 0 is small enough, this value is much smaller than −f (xi) = ϵ. As i → ∞, the estimates

−f (xi) converge superlinearly to 0 by Theorem 4.8, giving us what we need. �

Step 1(a) is important in the analysis of Algorithm 3.1. As explained earlier in Section 3, it may be difficult to implement
this step. Algorithm 3.1 may run fine without ever performing step 1(a) (see the example in Section 8), but it may need to
be performed occasionally in a practical implementation. The following result tells us that under the assumptions that we
have made so far, this problem is locally a strictly convex problem with a unique solution.

Proposition 5.4. Suppose that f : Rn
→ R is C2 in a neighborhood of a nondegenerate critical point x̄ of Morse index 1 with

critical value f (x̄) = c. Then if ϵ > 0 is small enough, there is a convex neighborhood Uϵ of x̄ such that (lev≤c−ϵ f ) ∩ Uϵ is a
union of two disjoint convex sets.

Consequently, provided θ is sufficiently small, the pair of nearest points guaranteed by Proposition 4.3(2) are unique.

Proof. Suppose Assumptions 4.1 and 4.2 hold. In addition, we further assume that

|∇f (x) − H(x)| < δ |x| for all x ∈ B̊(0, θ).

We can choose Uϵ to be the interior of conv(C1 ∪C2), where C1 and C2 are the cylinders in Fig. 4.1 and defined in the proof of
Proposition 4.3, but in view of Theorem 5.6, we shall prove that Uϵ can be chosen to be the bigger set conv(C̃1 ∪ C̃2), where
C̃1 and C̃2 are cylinders defined by

C̃1 := Bn−1(0, ρ) × [−β, −b] ⊂ Rn−1
× R,

C̃2 := Bn−1(0, ρ) × [b, β] ⊂ Rn−1
× R,

where β, ρ are constants to be determined. We choose β such that

Bn−1(0, a) × {β} ⊂ int(S+).

In particular, β satisfies

a2(a1 + δ) + β2(an + δ) < −ϵ

⇒ β2 >
1

−an − δ


ϵ + a2(a1 + δ)


=

ϵ

−an − δ


1 +

8δ(a1 + δ)

(an−1 − δ)(−an − δ)


.

We choose β to be any value satisfying the above inequality.
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Next, we choose ρ to be the smallest value such that S− ∩ (Rn−1
× [−β, β]) ∩ B(0, θ) ⊂ C̃1 ∪ C̃2. This calculation is

similar to the calculation of a, which gives

(an−1 − δ)ρ2
+ (an − δ)β2

= −ϵ

⇒ ρ =


−ϵ − (an − δ)β2

an−1 − δ
.

We shall not expand the terms, but remark that β and ρ are of O(
√

ϵ).
The proof of Proposition 4.3 tells us that conv(C̃1 ∪ C̃2) ∩ lev≤−ϵ f is a union of the two nonempty sets C̃1 ∩ lev≤−ϵ f and

C̃2 ∩ lev≤−ϵ f . It remains to show that these two sets are strictly convex.
Any point x ∈ C̃1 can be written as

x = (x′, xn),

where x′
∈ Rn−1 is of norm at most ρ, and −β ≤ xn ≤ −b, where β is as calculated above and b =


ϵ

−an+δ
as in Fig. 4.1.

This implies that

Hx = (x′′, anxn),

where x′′ is of norm at most a1
x′
. It is clear that as δ ↓ 0, the unit vector in the direction of Hx converges to (0, 1). This

implies that for any κ1 > 0, there exists some δ > 0 such that unit(∇f (x)) · (0, 1) ≥ 1 − κ1 for all x ∈ C1. (Note that
C̃1 depends on δ.) Here, unit : Rn

\ {0} → Rn is the mapping of a nonzero vector to the unit vector pointing in the same
direction.

Let z1 and z2 be points in C̃1 ∩ (lev≤−ϵ f ). Suppose that z1(n) < z2(n), and let v = (v1, v2) ∈ Rn−1
× R be a unit

vector in the same direction as z2 − z1. We further assume, reducing θ and δ as necessary, that ‖H(x) − H(0)‖ < κ2 for all
x ∈ C̃1 ∩ (lev≤−ϵ f ). Suppose that κ1 and κ2 are small enough that

√
2κ1 <


an−1−κ2
an−1−an

.
Note that v2 ≥ 0. One of these two cases on v2 must hold. We prove that in both cases, the open line segment (z1, z2)

lies in the interior of (lev≤−ϵ f ) ∩ C̃1.
Case 1: v2 >

√
2κ1.

In this case, for all x ∈ C̃1, we have

v · (unit(∇f (x))) = v · (0, 1) + v · (unit(∇f (x)) − (0, 1))
≥ v2 − |v| |unit(∇f (x)) − (0, 1)|
= v2 − |unit(∇f (x)) − (0, 1)|

= v2 −


|unit(∇f (x))|2 + |(0, 1)|2 − 2unit(∇f (x)) · (0, 1)

> v2 −


2 − 2(1 − κ1)

= v2 −


2κ1

> 0.

This means that along the line segment [z1, z2], the function f is strictly monotone. Therefore, if x1, x2 ∈ (lev≤−ϵ f )∩ C̃1, the
open line segment (z1, z2) lies in the interior of (lev≤−ϵ f ) ∩ C̃1.

Case 2: v2 <


an−1−κ2
an−1−an

.
Let Hu(0) denote the diagonal matrix of size (n − 1) × (n − 1) with elements a1, . . . , an−1. We have

v⊤H(x)v = v⊤H(0)v + v⊤(H(x) − H(0))v
> v⊤

1 H
u(0)v1 + anv2

2 − |v|2 ‖H(x) − H(0)‖
≥ an−1 |v2|2 + anv2

2 − ‖H(x) − H(0)‖
> an−1(1 − v2

2) + anv2
2 − κ2

= an−1 + v2
2(an − an−1) − κ2

> an−1 + (κ2 − an−1) − κ2

≥ 0.

This means that the function f is strictly convex along the line segment [z1, z2], so if x1, x2 ∈ (lev≤−ϵ f ) ∩ C̃1, the open line
segment (z1, z2) lies in the interior of (lev≤−ϵ f ) ∩ C̃1, concluding the proof of the first part of this result.

To prove the next statement on the uniqueness of the pair of closest points, suppose that (x̃′, ỹ′) and (x̃′′, ỹ′′) are distinct
pairs whose distance give the distance between the components of (lev≤−ϵ f ) ∩ B(0, θ), where B(0, θ) is as stated in
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Fig. 5.1. lev≤0 f for f (x) = (x2 − x21)(x1 − x22).

Proposition 4.3. If ϵ is small enough, then conv(C̃1 ∪ C̃2) lies in B̊(0, θ). Then by the strict convexity of the components
of (lev≤−ϵ f ) ∩ conv(C̃1 ∪ C̃2), the pair ( 1

2 (x̃
′
+ x̃′′), 1

2 (ỹ
′
+ ỹ′′)) lie in the same components, and the distance between

this pair of points must be the same as that for the pairs (x̃′, ỹ′) and (x̃′′, ỹ′′). The closest points in the components of
[
1
2 (x̃

′
+ x̃′′), 1

2 (ỹ
′
+ ỹ′′)]∩ lev≤−ϵ f give a smaller distance between the components of (lev≤−ϵ f )∩B(0, θ), which contradicts

the optimality of the pairs (x̃′, ỹ′) and (x̃′′, ỹ′′). �

Note that in the case of ϵ = 0, there may be no neighborhood U0 of x̄ such that U0 ∩ (lev≤c f ) is a union of two convex
sets intersecting only at the critical point. We also note that Uϵ depends on ϵ in our result above. The following example
explains these restrictions.

Example 5.5. Consider the function f : R2
→ R defined by f (x) = (x2 − x21)(x1 − x22). The shaded area in Fig. 5.1 is a sketch

of lev≤0 f .
We now explain that the neighborhood Uϵ defined in Proposition 5.4 must depend on ϵ for this example. For any open U

containing 0, we can always find two points p and q in a component of (lev<0 f ) ∩ U such that the line segment [p, q] does
not lie in lev<0 f . This implies that the component of (lev≤−ϵ f ) ∩ U is not convex if 0 < ϵ ≤ −max(f (p), f (q)). �

We now take a second look at the problem of minimizing the distance between two components in step 1(a) of
Algorithm 3.1. We need to solve the following problem for ϵ > 0:

min
x,y

|x − y|

s.t. x lies in the same component as a in (lev≤ f (x̄)−ϵ f ) ∩ B̊(x̄, θ)

y lies in the same component as b in (lev≤ f (x̄)−ϵ f ) ∩ B̊(x̄, θ).

(5.1)

If (x̃, ỹ) is a pair of local optimizers, then ỹ is the point closest to the component of (lev≤ f (x̄)−ϵ f ) ∩ U containing x̃ and vice
versa. This gives us the following optimality conditions:

∇f (x̃) = κ1(ỹ − x̃),
∇f (ỹ) = κ2(x̃ − ỹ),
f (x̃) = f (x̄) − ϵ

f (ỹ) = f (x̄) − ϵ

for some κ1, κ2 ≥ 0.

(5.2)

From Proposition 5.4, we see that given any θ > 0 sufficiently small, provided that the conditions in Proposition 4.3 hold,
the global minimizing pair of (5.1) is unique. Even though convexity is absent, the following theorem shows that the global
minimizing pair is, under added conditions, the only pair satisfying the optimality conditions (5.2), showing that there are
no other local minimizers of (5.1).

Theorem 5.6. Suppose that f : Rn
→ R is C2, and x̄ is a nondegenerate critical point of Morse index 1 such that f (x̄) = c. If

θ > 0 is sufficiently small, then for any ϵ > 0 (depending on θ ) sufficiently small, the global minimizer of (5.1) is the only pair in
B̊(x̄, θ) × B̊(x̄, θ) satisfying the optimality conditions (5.2).

Proof. Suppose that Assumption 4.1 holds, and δ is chosen small enough that 4.2 holds. We also assume that θ is small
enough that |H(x)−H(0)| < 1

2 min(an−1, −an). Seeking a contradiction, suppose that (x̃, ỹ) satisfy the optimality conditions.
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We refer to Fig. 4.1, and also recall the definitions of the sets C̃1 and C̃2 in the proof of Proposition 5.4. As proven in
Proposition 5.4, the convexity properties of the two level sets in (lev≤ f (x̄)−ϵ f ) ∩ B̊(x̄, θ) imply that if x̃ ∈ C̃1, ỹ ∈ C̃2 and the
optimality conditions are satisfied, then the pair (x̃, ỹ) is the global minimizing pair.

Consider the case where x̃ ∉ C̃1. One of the two cases holds. We note the asymmetry below, in that we check whether
ỹ ∈ C2 instead of whether ỹ ∈ C̃2.

Case 1: ỹ ∈ C2. In this case, if the first n − 1 coordinates of x̃ are the same as those of ỹ, then x̃ lies in the interior of
(lev≤−ϵ f )∩B̊(x̄, θ), which is a contradiction to optimality. Recall that the value ofβ was chosen such that ỹ+(0, x̃(n)−ỹ(n))
lies in (lev≤−ϵ f )∩ B̊(x̄, θ). By the convexity of f |L′(x̃(n)), where L′(x̃(n)) is the affine space {x | x(n) = x̃(n)}, the line segment
connecting x̃ and ỹ+ (0, x̃(n)− ỹ(n)) lies in (lev≤−ϵ f )∩ B̊(x̄, θ). The distance between ỹ and points along this line segment
decreases (at a linear rate) as one moves away from x̃, which again contradicts the assumption that (x̃, ỹ) satisfy (5.2).

Case 2: ỹ ∉ C2. By the convexity of f |L′(x̃(n)) and f |L′(ỹ(n)), the line segments [ỹ, ỹ − (0, ỹ(n))] and [x̃, x̃ − (0, x̃(n))] lie in
(lev≤−ϵ f )∩ B̊(x̄, θ). These line segments and the optimality of the pair (x̃, ỹ) imply that the first n− 1 components of x̃ and
ỹ are the same. This in turn implies that ∇f (x̃) is a positive multiple of (0, 1).

Our proof ends ifwe show that if θ is small enough,∇f (x̃) cannot be apositivemultiple of (0, 1). If x̃ ∉ C̃1, then x̃(n) < −β .
If x̃ lies on the boundary of lev≤−ϵ f , then f (x̃) = −ϵ, and we have

f (x̃) = −ϵ
n−

i=1

(ai + δ)x̃(i)2 ≥ −ϵ

(a1 + δ)

n−
i=1

x̃(i)2 + (an − a1)x̃(n)2 ≥ −ϵ

(a1 + δ)|x̃|2 ≥ (a1 − an)x̃(n)2 − ϵ

|x̃|2

x̃(n)2
≥

a1 − an −
ϵ

x̃(n)2

a1 + δ

≥ 1 +

−an − δ −
ϵ

β2

a1 + δ
.

Upon expansion of the term β2 in the expression in the final line, we see that |x̃|2

x̃(n)2
is bounded from below by a constant

independent of ϵ and greater than 1. Since f is C2, the set

{x | ∇f (x) is a multiple of (0, 1)} ∩ B(0, θ)

is a manifold, whose tangent at the origin is the line spanned by (0, 1). This implies that if θ is small enough, then x̃ ∉ C̃1 and
x̃ lying on the boundary of lev≤−ϵ f implies that∇f (x̃) cannot be amultiple of (0, 1).We have the required contradiction. �

Remark 5.7. We now describe a heuristic for approximating a pair of closest points iteratively between the components of
(lev≤c−ϵ f ) ∩ U . For two points x′ and y′ that approximate x̃i and ỹi, we can find local minimizers of f on the affine spaces
orthogonal to x′

−y′ that pass through x′ and y′ respectively, say x∗, y∗, and then find the closest points in the two components
of (lev≤c−ϵ f )∩ [x∗, y∗

], where [x∗, y∗
] is the line segment connecting x∗ and y∗. This heuristic is particularly practical in the

case of the Wilkinson problem, as we illustrate in Sections 7 and 8.

6. Saddle points and criticality properties

We have seen that Algorithm 2.1 allows us to find saddle points of mountain type. In this section, we first prove an
equivalent definition of a saddle point based on paths connecting two points. Then we prove that saddle points are critical
points in the metric sense and in the nonsmooth sense.

In the following equivalent condition for saddle points, we say that a path p : [0, 1] → X connects a and b if p(0) = a
and p(1) = b, and it is contained in U ⊂ X if p([0, 1]) ⊂ U . The maximum value of the path p is defined as maxt f ◦ p(t).

Proposition 6.1. Let (X, d) be a metric space. For a continuous function f : X → R, x̄ is a saddle point of mountain pass type if
and only if there exists an open neighborhood U and two points a, b ∈ (lev<l f ) ∩ U such that

(a) the maximum value of any path connecting a and b contained in U is at least f (x̄), and
(b) for all ϵ > 0, there exists δ, θ ∈ (0, ϵ) and a path pϵ connecting a and b contained in U such that the maximum value of pϵ

is at most f (x̄) + ϵ, and (lev≥f (x̄)−θ f ) ∩ pϵ([0, 1]) ⊂ B(x̄, δ).

Proof. We first prove that the conditions (a) and (b) above imply that x̄ is a saddle point. Let A and B be the path connected
components of lev<f (x̄) f ∩U containing a and b respectively. For any ϵ > 0, the condition (lev≥f (x̄)−θ f )∩pϵ([0, 1]) ⊂ B(x̄, δ)
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tells us that we can find points xϵ ∈ A and yϵ ∈ B such that d(x̄, xϵ) < δ < ϵ and d(x̄, yϵ) < ϵ. For a sequence ϵi ↘ 0, we
set xi = xϵi and yi = yϵi . This shows that x̄ lies in both the closure of A and that of B, and hence x̄ is a saddle point.

Next, we prove the converse. Suppose that x̄ is a saddle point, with U being a neighborhood of x̄, and the sets A and B are
two path components of (lev<f (x̄) f ) ∩ U whose closures contain x̄. For any ϵ > 0, we can find some δ ∈ (0, ϵ) such that
d(x, x̄) < δ implies |f (x) − f (x̄)| < ϵ. There are two points xϵ ∈ A and yϵ ∈ B such that d(xϵ, x̄) < δ and d(yϵ, x̄) < δ.

Let a and b be any two points in the sets A and B respectively. There is a path connecting a to xϵ contained in lev<f (x̄) f ∩U ,
say pa, and we can similarly find a path pb connecting yϵ to b contained in lev<f (x̄) f ∩U . The maximum values on both paths
pa and pb are less than f (x̄), so there is some θ ∈ (0, ϵ) such that both maximum values are bounded above by f (x̄) − θ .
Choose a path p′

ϵ to be the line segment connecting xa and yb contained in B(x̄, δ). The path pϵ formed by the concatenation
of the paths pa, p′

ϵ and pb satisfies condition (b). Condition (a) is easily seen to be satisfied, and hence we are done. �

Ideally, we want to improve condition (b) in Proposition 6.1 so that x̄ is the maximum point on some mountain pass
connecting a and b. We shall see in Example 6.3 that saddle points in general need not have this property. A simple finite
dimensional condition on the function f so that this happens is semi-algebraicity. A set in Rn is semi-algebraicif it is a union
of finitely many sets defined by finitely many polynomial inequalities, and a function f : Rn

→ R is semi-algebraic if its
graph {(x, y) ∈ Rn

× R | y = f (x)} is a semi-algebraic set. Semi-algebraic objects remove much of the oscillatory behavior
that typically does not appear in applications, and form a large class of objects that appear in applications. We will appeal
to semi-algebraic geometry for only the next result, and we refer readers interested in the general theory of semi-algebraic
functions (and more generally, that of o-minimal structures and tame topology, under which Proposition 6.2 also holds)
to [31–34].

Proposition 6.2. In the case where f : Rn
→ R is semi-algebraic, condition (b) in Proposition 6.1 can be replaced with:

(b′) There is a path connecting a and b contained in U along which the unique maximizer is x̄.

Proof. It is clear that (b′) is a stronger condition than (b), so we prove that if f is semi-algebraic, then (b′) holds. Suppose
x̄ is a saddle point of mountain pass type. Let U be an open neighborhood of x̄, and sets A and B be two components of
(lev<f (x̄) f ) ∩ U whose closures contain x̄. Choose points a ∈ A and b ∈ B. It is clear that A and B are semi-algebraic (see for
example [33, Section 3.2]). By the curve selection lemma (see for example [33, Section 3.1]), there is a path pa connecting a
and x̄ such that pa(1) = x̄, and pa([0, 1)) ⊂ A. Similarly, we can find a path pb connecting x̄ and b such that pb(0) = x̄ and
pb((0, 1]) ⊂ B. The concatenation of pa and pb gives us what we need. �

In the absence of semi-algebraicity, the following example illustrates that a saddle point need not satisfy condition (b′).

Example 6.3. We define f : R2
→ R through Fig. 6.1. There are two shapes in the positive quadrant the figure: a blue

‘‘comb’’ C wrapping around a brown ‘‘sun’’ S. The closure of C contains the origin 0 (the intersection of the horizontal and
vertical axis).

We can define a continuous f : R2
→ R such that f is negative on C ∪ (−C) and positive on (S ∪ (−S)) \ {0} and

{(x, y) | xy < 0}, and extend f continuously to all of R2 using the Tietze extension theorem. It is clear that 0 is a saddle
point, and the sets A, B ⊂ lev<0 f whose closures contain 0 can be taken to be the path connected components containing
C and (−C) respectively. But the origin 0 does not satisfy condition (b′).

Our next step is to establish the relation between saddle points and criticality in metric spaces. We recall the following
definitions in metric critical point theory from [15,17,16].

Definition 6.4. Let (X, d) be a metric space. We call the point x Morse regular for the function f : X → R if, for some
numbers γ , σ > 0, there is a continuous function

φ : B(x, γ ) × [0, γ ] → X

such that all points u ∈ B(x, γ ) and t ∈ [0, γ ] satisfy the inequality

f (φ(x, t)) ≤ f (x) − σ t,

and that φ(·, 0) is the identity map. The point x is Morse critical if it is not Morse regular.
If there is some κ > 0 and such a function φ that also satisfy the inequality

d(φ(x, t), x) ≤ κt,

then we call x deformationally regular. The point x is deformationally critical if it is not deformationally regular.

We now relate saddle points to Morse critical and deformationally critical points.

Proposition 6.5. For a function f : X → R defined on a metric space X, x̄ being a saddle point of mountain pass type implies
that x̄ is deformationally critical. If in addition, either X = Rn or condition (b′) in Proposition 6.2 holds, then x̄ is Morse critical.
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Fig. 6.1. Illustration of the saddle point in Example 6.3.

Proof. Let U be an open neighborhood of x̄ as defined in Definition 1.2, and let A and B be two distinct components of
(lev<f (x̄) f )∩U which contain x̄ in their closures. The proofs of all three results by contradiction are similar. For convenience,
we label the following three assumptions as follows, and prove that they all lead to the contradiction that A and B cannot be
distinct path components in U .

(D) x̄ is deformationally regular.
(MRn) x̄ is Morse regular, and X = Rn.
(Mb′) x̄ is Morse regular, and condition (b′) in Proposition 6.2 holds.

Suppose condition (MRn) holds. Let γ , σ > 0 and φ : B(x̄, γ ) × [0, γ ] → X satisfy the properties of Morse regularity given
in Definition 6.4. We can assume that γ is small enough that B(x̄, γ ) ⊂ U . By the continuity of φ and the compactness of
B(x̄, γ ), there is some γ ′ > 0 such that B(x̄, γ ) × [0, γ ′

] ⊂ φ−1(U).
Next, suppose condition (D) holds. Let γ , σ , κ > 0 and φ : B(x̄, γ ) × [0, γ ] → X satisfy the properties given

in Definition 6.4 on deformation regularity. We can assume that γ > 0 is small enough and choose γ ′ > 0 so that
B(x̄, γ + γ ′κ) ⊂ U . The conditions on φ imply that φ


B(x̄, γ ) × [0, γ ′

]


⊂ B(x̄, γ + γ ′κ) ⊂ U , which in turn imply
that B(x̄, γ ) × [0, γ ′

] ⊂ φ−1(U).
Here is the next argument common to both conditions (D) and (MRn). By the characterization of saddle points in

Proposition 6.1, we can find θ and δ satisfying the condition in Proposition 6.1(b) with θ, δ ≤ min( 1
2γ

′σ , γ ). This gives
us B(x̄, δ) ⊂ B(x̄, γ ) ⊂ U in particular. We can glean from the proof of Proposition 6.1 that we can find two points
aδ ∈ A ∩ B(x̄, δ) and bδ ∈ B ∩ B(x̄, δ) and a path p′

: [0, 1] → X connecting aδ and bδ contained in B(x̄, δ) with maximum
value at most f (x̄) + min( 1

2γ
′σ , γ ). The function values f (aδ) and f (bδ) satisfy f (aδ), f (bδ) ≤ f (x̄) − θ . The condition

B(x̄, γ ) × [0, γ ′
] ⊂ φ−1(U) implies that p′([0, 1]) × [0, γ ′

] ⊂ φ−1(U).
If condition (Mb′) holds, then for any δ > 0, we can find a path p′

: [0, 1] → X connecting two points aδ ∈ A ∩ B(x̄, δ)
and bδ ∈ B ∩ B(x̄, δ) contained in B(x̄, δ) with maximum value at most f (x̄). There is also some θ > 0 such that
f (aδ), f (bδ) < f (x̄) − θ . Let γ , σ > 0 and φ : B(x̄, γ ) × [0, γ ] → X be such that they satisfy the properties of Morse
regularity. By the compactness of p′([0, 1]), we can find some γ ′ > 0 such that p′([0, 1]) × [0, γ ′

] ⊂ φ−1(U).
To conclude the proof for all three cases, consider the path p̄ : [0, 3] → X defined by

p̄(t) =

φ(aδ, γ
′t) for 0 ≤ t ≤ 1

φ(p′(t − 1), γ ′) for 1 ≤ t ≤ 2
φ(bδ, γ

′(3 − t)) for 2 ≤ t ≤ 3.

This path connects aδ and bδ , is contained in U and has maximum value at most max(f (x̄) − θ, f (x̄) −
1
2γ

′σ), which is less
than f (x̄). This implies that A and B cannot be distinct path connected components of (lev<f (x̄) f ) ∩ U , which establishes the
contradiction in all three cases. �

We nowmove on to discussing how saddle points and deformationally critical points relate to nonsmooth critical points.
Here is the definition of Clarke critical points.
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Fig. 6.2. Different kinds of critical points.

Definition 6.6 ([21, Section 2.1]). Let X be a Banach space. Suppose f : X → R is locally Lipschitz. The Clarke generalized
directional derivative of f at x in the direction v ∈ X is defined by

f ◦(x; v) = lim sup
t↘0,y→x

f (y + tv) − f (y)
t

,

where y ∈ X and t is a positive scalar. The Clarke subdifferential of f at x, denoted by ∂C f (x), is the convex subset of the dual
space X∗ given by

{ζ ∈ X∗
| f ◦(x; v) ≥ ⟨ζ , v⟩ for all v ∈ X}.

The point x is a Clarke (nonsmooth) critical point if 0 ∈ ∂C f (x). Here, ⟨·, ·⟩ : X∗
× X → R defined by ⟨ζ , v⟩ := ζ (v) is the

dual relation.

For the particular case of C1 functions, ∂C f (x) = {∇f (x)}. Therefore a critical point of a smooth function (i.e., a point x
that satisfies ∇f (x) = 0) is also a Clarke critical point. From the definitions above, it is clear that an equivalent definition of
a Clarke critical point is f ◦(x; v) ≥ 0 for all v ∈ X . This property allows us to deduce Clarke criticality without appealing to
the dual space X∗.

Clarke (nonsmooth) critical points of f are of interest in, for example, partial differential equations with discontinuous
nonlinearities. Critical point existence theorems for nonsmooth functions first appeared in [18,19]. For the problem of
finding nonsmooth critical points numerically, we are only aware of [24].

The following result is well-known, and we include its proof for completeness.

Proposition 6.7. Let X be a Banach space and f : X → R be locally Lipschitz at x̄. If x̄ is deformationally critical, then it is Clarke
critical.

Proof. We prove the contrapositive instead. If the point x̄ is not Clarke critical, there exists a unit vector v ∈ X such that

lim sup
t↘0,y→x̄

f (y + tv) − f (y)
t

< 0.

Now defining φ(x, t) = x − tv satisfies the conditions for deformation regularity. �

To conclude, Fig. 6.2 summarizes the relationship between saddle points and the different kinds of critical points.

7. Wilkinson’s problem: background

In Section 8, we will apply Algorithm 3.1 to attempt to solve the Wilkinson problem, while we give a background for the
Wilkinson problem in this section. We first define the Wilkinson problem.

Definition 7.1. Given a matrix A ∈ Rn×n, the Wilkinson distance of the matrix A is the distance from the matrix A to the
nearest matrix with repeated eigenvalues. The problem of finding the Wilkinson distance is theWilkinson problem.

Though not cited explicitly, as noted by [25], the Wilkinson problem can be traced back to [35, pp. 90–93]. See [36–38]
for more references, and in particular, [36] and the discussion at the beginning of [37, Section 3].

It is well-known that eigenvalues vary in a Lipschitz manner if and only if they do not coincide. In fact, eigenvalues are
differentiable in the entries of thematrixwhen they are distinct. Hence, as discussed byDemmel [39], theWilkinson distance
is a natural condition measure for accurate eigenvalue computation. TheWilkinson distance is also important because of its
connectionswith the stability of eigendecompositions ofmatrices. To our knowledge, no fast and reliable numerical method
for computing the Wilkinson distance is known.
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The ϵ-pseudospectrum Λϵ(A) ⊂ C of A is defined as the set

Λϵ(A) := {z | ∃E s.t. ‖E‖ ≤ ϵ and z is an eigenvalue of A + E}

=


z |
(A − zI)−1

−1
≤ ϵ


=

z | σ(A − zI) ≤ ϵ


,

where σ(A−zI) is the smallest singular value of A−zI . The function z → (A−zI)−1 is sometimes referred to as the resolvent
function, whose (Clarke) critical points are referred to as resolvent critical points. To simplify notation, define σ A : C → R+

by

σ A(z) := σ(A − zI)
= smallest singular value of (A − zI).

For more on pseudospectra, we refer the reader to [40].
It is well-known that each component of the ϵ-pseudospectrum Λϵ(A) contains at least one eigenvalue. If ϵ is small

enough, Λϵ(A) has n components, each containing an eigenvalue. Alam and Bora [25] proved the following result on the
Wilkinson distance.

Theorem 7.2 ([25]). Let ϵ̄ be the smallest ϵ for whichΛϵ(A) contains n−1 or fewer components. Then ϵ̄ is theWilkinson distance
for A.

For any pair of distinct eigenvalues of A, say {z1, z2}, let the objective of the mountain pass problem with function σ A and the
two chosen eigenvalues as endpoints be v(z1, z2). The value ϵ̄ is also equal to

min{v(z1, z2) | z1 and z2 are distinct eigenvalues of A}. (7.1)

Two components of Λϵ(A) would coalesce when ϵ ↑ ϵ̄, and the point at which two components coalesce can be used to
construct the matrix closest to A with repeated eigenvalues. Equivalently, the point of coalescence of the two components
is also the highest point on an optimal mountain pass for the function σ A between the corresponding eigenvalues. We use
Algorithm 3.1 to find such points of coalescence, which are resolvent critical points.

We should remark that solving for v(z1, z2) is equivalent to solving a global mountain pass problem, which is difficult.
Also, the problem of finding the eigenvalue pair {z1, z2} that minimizes (7.1) is potentially difficult. In Section 8, we focus
only on finding a critical point of mountain pass type between two chosen eigenvalues z1 and z2. Fortunately, this strategy
often succeeds in obtaining the Wilkinson distance in our experiments in Section 8.

We should note that other approaches to theWilkinson problem include that of [36], which uses a Newton type method
for the same local problem, and [41].

8. Wilkinson’s problem: implementation and numerical results

We first use a convenient fast heuristic to estimate which pseudospectral components first coalesce as ϵ increases
from zero, as follows. We construct the Voronoi diagram corresponding to the spectrum, and then minimize the function
σ A : C → R over all the line segments in the diagram (a fast computation, as discussed in the comments on step 1(b) below).
We then concentrate on the pair of eigenvalues separated by the line segment containing the minimizer. This is illustrated
in Example 8.1.

We describe implementation issues of Algorithm 3.1.
Step 1(a): Approximately minimizing the distance between a pair of points in distinct components seems challenging

in practice, as we discussed briefly in Section 3. In the case of pseudospectral components, we have the advantage that
computing the intersection between any circle and the pseudospectral boundary is an easy eigenvalue computation [42].
This observation can be used to check optimality conditions or algorithm design for step 1(a). We note that in our numerical
implementation, step 1(a) is never actually performed.

Step 1(b): Finding the global minimizer in step 1(b) of Algorithm 3.1 is easy in this case. Byers [43] proved that ϵ is a
singular value of A − (x + iy)I if and only if iy is an eigenvalue of

x − A∗
−ϵI

ϵI A − x


.

UsingByers’ observation, Boyd andBalakrishnan [44] devised a globally convergent and locally quadratic convergentmethod
for the minimization problem over R of y → σ A(x+ iy). We can easily amend these observations to calculate the minimum
of σ A(x + iy) over a line segment efficiently by noticing that if |z| = 1, then

σ A(x + iy) = σ(A − (x + iy)I) = σ(z(A − (x + iy)I)).
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Fig. 8.1. A sample run of Algorithm 3.1.

Example 8.1. We apply our mountain pass algorithm to the matrix

A =


0.461 + 0.650i 0.006 + 0.625i

0.457 + 0.983i 0.297 + 0.733i
0.451 + 0.553i 0.049 + 0.376i

0.412 + 0.400i 0.693 + 0.010i
0.902 + 0.199i

 .

The results of the numerical algorithm are presented in Table 1, and plots using EigTooL [45] are presented in Fig. 8.1.
We tried many random examples of bidiagonal matrices taking entries in the square {x + iy | 0 ≤ x, y ≤ 1} of the same
form as A. The convergence to a critical point in this example is representative of the typical behavior that we encountered.

In Fig. 8.1, the top left picture shows that the first step in the Voronoi diagram method identifies the pseudospectral
components corresponding to the eigenvalues 0.461+0.650i and 0.451+0.553i as the ones that possibly coalesce first. We
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Table 1
Convergence data for Example 8.1. Significant digits are in bold.

i f (xi) Mi
Mi−f (xi)

f (xi)
|xi − yi|

1 6.1325135002707E−4 6.1511092864335E−4 3.03E−03 5.23E−03
2 6.1511091521293E−4 6.1511092861426E−4 2.18E−08 1.40E−05
3 6.1511092861422E−4 6.1511092861423E−4 3.35E−15 9.97E−10
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Fig. 8.2. An example where the Voronoi diagram heuristic fails.

zoom into these eigenvalues in the top right picture. In the bottom left diagram, successive steps in the bisectionmethod give
a better approximation of the saddle point. Finally in the bottom right picture, we see that the saddle point was calculated
at an accuracy at which the level sets of σ A are hard to compute.

There are other cases where the heuristic method fails to find the correct pair of eigenvalues whose components first
coalesce.

Example 8.2. Consider the matrix A generated by the following Matlab code:

A=zeros(10);

A(1:9,2:10)= diag([0.5330 + 0.5330i, 0.9370 + 0.1190i,...
0.7410 + 0.8340i, 0.7480 + 0.8870i, 0.6880 + 0.6700i,...
0.2510 + 0.7430i, 0.9540 + 0.6590i, 0.2680 + 0.6610i,...
0.2670 + 0.4340i]);

A= A+diag([0.9850 + 0.7550i,0.8030 + 0.7810i,...
0.2590 + 0.5110i,0.3840 + 0.5310i,0.0080 + 0.5360i,...
0.9780 + 0.2720i,0.7190 + 0.3100i,0.5560 + 0.8370i,...
0.6350 + 0.7630i,0.5110 + 0.8870i]);

A sample run for this matrix is shown in Fig. 8.2. The heuristic on minimal values of σ A on the edges of the Voronoi
diagram identifies the top left and central eigenvalues as a pair for which the pseudospectral components first coalesce.
However, the correct pair should be the central and bottom right eigenvalues.

Here are a few more observations. In our trials, we attempt to find the Wilkinson distance for bidiagonal matrices of
size 10 × 10 similar to the matrices in Examples 8.1 and 8.2. In all the examples that we have tried, there was no need to
perform step 1(a) of Algorithm 3.1 to achieve convergence to a critical point. The convergence for the matrix in Example 8.1
reflects the general performance of the (local) algorithm. As we have seen in Example 8.2, the heuristic for choosing a pair of
eigenvaluesmay fail to choose the correct pseudospectral components which first coalesce as ϵ increases. In a sample of 225
runs, we need to check other pairs of eigenvalues seven times. In such cases, a different choice of a pair of eigenvalues still
gave convergence to the Wilkinson distance, though whether this must always be the case is uncertain. The upper bounds
for the critical value are also better approximates of the critical values than the lower bounds.
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9. Non-Lipschitz convergence and optimality conditions

In this section, we discuss the convergence of Algorithm 2.1 in the non-Lipschitz case and give an optimality condition
in step 2 of Algorithm 2.1. As one might expect in the smooth case in a Hilbert space, if xi and yi are closest points in the
different components, ∇f (xi) ≠ 0 and ∇f (yi) ≠ 0, then we have

xi − yi = λ1∇f (yi),
yi − xi = λ2∇f (xi)

for λ1, λ2 > 0. The rest of this section extends this result to the nonsmooth case, making use of the language of variational
analysis in the style of [23,20–22] to describe the relation between subdifferentials of f and the normal cones of the level
sets of f .

We now recall the definition of the Fréchet subdifferential, which is a generalization of the derivative to nonsmooth
cases, and the Fréchet normal cone. A function f : X → R is lsc (lower semicontinuous) if lim infx→x̄ f (x) ≥ f (x̄) for all
x̄ ∈ X .

Definition 9.1. Let f : X → R ∪ {+∞} be a proper lsc function. We say that f is Fréchet subdifferentiable and x∗ is a Fréchet-
subderivative of f at x if x ∈ domf and

lim inf
|h|→0

f (x + h) − f (x) − ⟨x∗, h⟩
|h|

≥ 0.

We denote the set of all Fréchet-subderivatives of f at x by ∂F f (x) and call this object the Fréchet subdifferential of f at x.

Definition 9.2. Let S be a closed subset of X . We define the Fréchet normal cone of S at x to be NF (S; x) := ∂F ιS(x). Here,
ιS : X → R ∪ {∞} is the indicator function defined by ιS(x) = 0 if x ∈ S, and ∞ otherwise.

Closely related to the Fréchet normal cone is the proximal normal cone.

Definition 9.3. Let X be a Hilbert space and let S ⊂ X be a closed set. If x ∉ S and s ∈ S are such that s is a closest point to
x in S, then any nonnegative multiple of x − s is a proximal normal vector to S at s. The set of all proximal normal vectors is
denoted as NP(S; s).

The proximal normal cone and the Fréchet normal cone satisfy the following relation. See for example [20, Exercise 5.3.5].

Theorem 9.4. NP(S; x̄) ⊂ NF (S; x̄).

Here is an easy consequence of the definitions.

Proposition 9.5. Let S1 be the component of lev≤li f containing x0 and S2 be the component of lev≤li f containing y0. Suppose
that xi is a point in S1 closest to S2 and yi is a point in S2 closest to xi. Then we have

(yi − xi) ∈ NP(lev≤li f ; xi) ⊂ NF (lev≤li f ; xi).

Similarly, (xi − yi) ∈ NF (lev≤li f ; yi). These are two normals of lev≤li f pointing in opposite directions.

The above result gives a necessary condition for the optimality of step 2 in Algorithm 2.1. We now see how the Fréchet
normals relate to the subdifferential of f at xi, yi at z̄. Here is the definition of the Clarke subdifferential for non-Lipschitz
functions.

Definition 9.6. Let X be a Hilbert space and let f : X → R be an lsc function. Then the Clarke subdifferential of f at x̄ is

∂C f (x̄) := cl conv{w- lim
i→∞

x∗

i | x∗

i ∈ ∂F f (xi), (xi, f (xi)) → (x̄, f (x̄))} + ∂∞

C f (x̄),

where the singular subdifferential of f at x̄ is a cone defined by

∂∞

C f (x̄) := cl conv{w- lim
i→∞

λix∗

i | x∗

i ∈ ∂F f (xi), (xi, f (xi)) → (x̄, f (x̄)), λi → 0+}.

For finite dimensional spaces, the weak topology is equivalent to the norm topology, so we may replace w- lim by lim in
that setting. We will use the limiting subdifferential and the limiting normal cone, whose definitions we recall below, in the
proof of the finite dimensional case of Theorem 9.11.
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Definition 9.7. Let X be a Hilbert space and let f : X → R be an lsc function. Define the limiting subdifferential of f at x̄ by

∂L f (x̄) := {w- lim
i→∞

x∗

i | x∗

i ∈ ∂F f (xi), (xi, f (xi)) → (x̄, f (x̄))},

and the singular subdifferential of f at x̄, which is a cone, by

∂∞ f (x̄) := {w- lim
i→∞

tix∗

i | x∗

i ∈ ∂F f (xi), (xi, f (xi)) → (x̄, f (x̄)), ti → 0+}.

The limiting normal cone is defined in a similar manner.

Definition 9.8. Let X be a Hilbert space and let S be a closed subset of X . Define the limiting normal cone of S at x by

NL(S; x) := {w- lim
i→∞

x∗

i | x∗

i ∈ NF (S; xi), S ∋ xi → x}.

It is clear from the definitions that the Fréchet subdifferential is contained in the limiting subdifferential, which is in turn
contained in the Clarke subdifferential. Similarly, the Fréchet normal cone is contained in the limiting normal cone. We first
state a theorem relating normal cones to subdifferentials in the finite dimensional case.

Theorem 9.9 ([23, Proposition 10.3]). For an lsc function f : Rn
→ R ∪ {∞}, let x̄ be a point with f (x̄) = α. Then

NF (lev≤α f ; x̄) ⊃ R+∂F f (x̄) ∪ {0} .

If ∂L f (x̄) ∌ 0, then also

NL(lev≤α f ; x̄) ⊂ R+∂L f (x̄) ∪ ∂∞ f (x̄).

The corresponding result for the infinite dimensional case is presented below.

Theorem 9.10 ([20, Theorem 3.3.4]). Let X be a Hilbert space and let f : X → R ∪ {+∞} be an lsc function. Suppose that
lim infx→x̄ d(∂F f (x); 0) > 0 and ξ ∈ NF (lev≤ f (x̄) f ; x̄). Then, for any ϵ > 0, there exist λ > 0, (x, f (x)) ∈ Bϵ((x̄, f (x̄))) and
x∗

∈ ∂F f (x) such thatλx∗
− ξ

 ≤ ϵ.

With these preliminaries, we now prove our theorem for the convergence of Algorithm 2.1 to a Clarke critical point.

Theorem 9.11. Suppose that f : X → R, where X is a Hilbert space and f is lsc. Suppose that z̄ is such that

(1) (z̄, z̄) is a limit point of {(xi, yi)}∞i=1 in Algorithm 2.1, and
(2) f is continuous at z̄.

Then one of the following must hold:

(a) z̄ is a Clarke critical point,
(b) ∂∞

C f (z̄) contains a line through the origin, or

(c)


yi−xi
|yi−xi|


i
converges weakly to zero.

Proof. We present both the finite dimensional and infinite dimensional versions of the proof for our result.
Suppose the subsequence {(xi, yi)}i∈J is such that limi→∞,i∈J(xi, yi) = (z̄, z̄), where J ⊂ N. We can choose J such that

none of the elements in {(xi, yi)}i∈J are such that lim infx→xi d (∂F f (x); 0) = 0 or lim infy→yi d (∂F f (y); 0) = 0; otherwise
we have 0 ∈ ∂C f (z̄) by the definition of the Clarke subdifferential, which is what we seek to prove. (In finite dimensions, the
condition lim infx→xi d(∂F f (x); 0) = 0 can be replaced by 0 ∈ ∂L f (xi).) We proceed to apply Theorem 9.10 (and Theorem 9.9
for finite dimensions) to find out more about NF (lev≤li f ; xi).

We first prove the result for finite dimensions. If 0 ∈ ∂L f (z̄), we are done. Otherwise, by Proposition 9.5 and Theorem 9.9,
there is a positive multiple of v = limi→∞

yi−xi
|yi−xi|

that lies in either ∂L f (z̄) or ∂∞ f (z̄). Similarly, there is a positive multiple of
−v = limi→∞

xi−yi
|yi−xi|

lying in either ∂L f (z̄) or ∂∞ f (z̄). If either v or −v lies in ∂L f (z̄), then we can conclude that 0 ∈ ∂C f (z̄)
from the definitions. Otherwise both v and −v lie in ∂∞

C f (z̄), so R{v} ⊂ ∂∞

C f (z̄) as needed.
We now prove the result for infinite dimensions. The point z̄ is the common limit of {xi}i∈J and {yi}i∈J . By the optimality

of |xi − yi| and Proposition 9.5, we have yi − xi ∈ NF (lev≤li f ; xi) and xi − yi ∈ NF (lev≤li f ; yi). By Theorem 9.10, for any
κi → 0+, there are λi > 0, x′

i ∈ Bκi|xi−yi|(xi) and x∗

i ∈ ∂F f

x′

i


such that

λix∗

i − (yi − xi)
 < κi |yi − xi|. Similarly, there

are γi > 0, y′

i ∈ Bκi|yi−xi|(yi) and y ∈ ∂F f (y′

i) such that
γiy∗

i − (xi − yi)
 < κi |xi − yi|. If either x∗

i or y∗

i converges to 0,

then 0 ∈ ∂C f (z̄), and we are done. Otherwise, by the Banach–Aloaglu theorem, the unit ball is compact, so


1
|x∗i |

x∗

i


i
and
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|yi−xi|
(yi − xi)


i
haveweak cluster points.We now show that theymust have the same cluster points by showing that their

difference converges to 0 (in the strong topology). Now, λix∗

i

|yi − xi|

 ≤

 λix∗

i

|yi − xi|
−

yi − xi
|yi − xi|

+  yi − xi
|yi − xi|


≤ κi + 1,

and similarly, 1 − κi ≤

 λix∗i
|yi−xi|

, so  λix∗i
|yi−xi|

 → 1, and thus λix∗

i

|yi − xi|
−

x∗

ix∗

i


 =


 λix∗

i

|yi − xi|

−
 x∗

ix∗

i



 → 0.

This means that x∗

ix∗

i

 −
yi − xi
|yi − xi|

 ≤

 λix∗

i

|yi − xi|
−

x∗

ix∗

i


+

 λix∗

i

|yi − xi|
−

yi − xi
|yi − xi|

 → 0,

which was what we claimed earlier. This implies that x∗i
|x∗i |

and y∗i
|y∗i |

have weak cluster points that are the negatives of each
other.

We now suppose that conclusion (c) does not hold. If

x∗

i


i has a nonzero weak cluster point, say x̄∗, then x̄∗ belongs to

∂C f (z̄). Then either

y∗

i


i has a weak cluster point ȳ∗ that is strictly a negative multiple of x̄∗, which implies that 0 ∈ ∂C f (z̄)

as claimed, or there is some ȳ∗,∞
∈ ∂∞

C f (z̄)which is a negativemultiple of x̄∗, which also implies that 0 ∈ ∂C f (z̄) as needed.

If neither

x∗

i


i nor


y∗

i


i converges weakly, then two (nonzero) weak cluster points of x∗i

|x∗i |
and y∗i

|y∗i |
that point in opposite

directions give a line through the origin in ∂∞

C f (z̄) as needed. �

In finite dimensions, conclusion (b) of Theorem 9.11 is precisely the lack of ‘‘epi-Lipschitzness’’ [23, Exercise 9.42(b)] of f .
One example where Algorithm 2.1 does not converge to a Clarke critical point but to a point with its singular subdifferential
∂∞

C f (·) containing a line through the origin is f : R → R defined by f (x) = −
√

|x|. Algorithm 2.1 converges to the point 0,
where ∂C f (0) = ∅ and ∂∞

C f (0) = R. We do not know of an example where only condition (c) holds.

Acknowledgements

We thank Jianxin Zhou for comments on an earlier version of the manuscript, and we thank an anonymous referee for
feedback, which has improved the presentation in the paper. Research supported in part by National Science Foundation
Grant DMS-0806057.

References

[1] J.E. Sinclair, R. Fletcher, A new method of saddle-point location for the calculation of defect migration energies, J. Phys. C: Solid State Phys. 7 (1974)
864–870.

[2] G. Henkelman, G. Jóhannesson, H. Jónsson, Methods for finding saddle points and minimum energy paths, in: S.D. Schwartz (Ed.), Progress in
Theoretical Chemistry and Physics, vol. 5, Kluwer, 2000.

[3] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
[4] Youssef Jabri, The Mountain Pass Theorem, Cambridge, 2003.
[5] Y.S. Choi, P.J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems, Nonlinear Anal. 20 (1993) 417–437.
[6] J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Wiley, 1984 Reprinted by Dover 2007.
[7] Zhonghai Ding, David Costa, Goong Chen, A high-linking algorithm for sign-changing solutions of semilinear elliptic equations, Nonlinear Anal. 38

(1999) 151–172.
[8] Yongxin Li, Jianxin Zhou, A minimax method for finding multiple critical points and its applications to semilinear PDEs, SIAM J. Sci. Comput. 23 (3)

(2001) 840–865.
[9] Yongxin Li, Jianxin Zhou, Convergence results of a localminimaxmethod for findingmultiple critical points, SIAM J. Sci. Comput. 24 (3) (2002) 865–885.

[10] Xudong Yao, Jianxin Zhou, Unified convergence results on a minimax algorithm for finding multiple critical points in Banach spaces, SIAM J. Numer.
Anal. 45 (2007) 1330–1347.

[11] J.J. Moré, T.S. Munson, Computing mountain passes and transition states, Math. Program. Ser. B 100 (2004) 151–182.
[12] V. Barutello, S. Terracini, A bisection algorithm for the numerical mountain pass, NoDEA Nonlinear Differential Equations Appl. 14 (2007) 527–539.
[13] J. Horák, Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems, Numer. Math. 98 (2004) 251–276.
[14] A. Ambrosetti, Critical points and nonlinear variational problems, Mém. Soc. Math. Fr. Sér. 2 49 (1992) 1–139.
[15] M. Degiovanni, M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 167 (1994) 73–100.
[16] G. Katriel, Mountain pass theorem and a global homeomorphism theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 189–209.
[17] A.D. Ioffe, E. Schwartzman, Metric critical point theory 1: Morse regularity and homotopic stability of a minimum, J. Math Pures Appl. 75 (1996)

125–153.
[18] Kung-Ching Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl.

80 (1981) 102–129.
[19] S. Shi, Ekeland’s variational principle and the mountain pass lemma, Acta Math. Sinica (NS) 1 (4) (1985) 348–355.
[20] J.M. Borwein, Q.J. Zhu, Techniques of Variational Analysis, Springer, 2005.
[21] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983 Republished as vol. 5, Classics in Applied Mathematics, SIAM, 1990.
[22] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I and II, Springer, Berlin, 2006.



4082 A.S. Lewis, C.H.J. Pang / Nonlinear Analysis 74 (2011) 4058–4082

[23] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer, 1998.
[24] Xudong Yao, Jianxin Zhou, A localminimax characterization of computingmultiple nonsmooth saddle critical points, Math. Program. Ser. B 104 (2005)

749–760.
[25] R. Alam, S. Bora, On sensitivity of eigenvalues and eigendecompositions of matrices, Linear Algebra Appl. 396 (2005) 273–301.
[26] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989.
[27] L. Nirenberg, Variational Methods in Nonlinear Problems. Topics in the Calculus of Variations, Montecatini Terme, 1987, in: Lectures Notes in

Mathematics, vol. 1365, Springer, 1989, pp. 100–119.
[28] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Regional Conference Ser. Math.,

vol. 65, AMS, 1986.
[29] M. Struwe, Variational Methods, 3rd ed., Springer, 2000.
[30] M. Willem, Un Lemme de déformation quantitatif en calcul des variations. A quantitative deformation lemma in the calculus of variations. Institut de

Mathématiques pures et appliquées, Applied and Pure Mathematics Institute, Recherche de mathématiques, Mathematics Research, no. 19, Catholic
University of Louvain, May 1992 (in French).

[31] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
[32] M. Coste, An introduction to semialgebraic geometry, Instituti Editoriali e poligrafici internazionali, Universita di Pisa, 2002. Available electronically

at: http://perso.univ-rennes1.fr/michel.coste/.
[33] M. Coste, An introduction to O-minimal geometry, Instituti Editoriali e poligrafici internazionali, Universita di Pisa, 1999. Available electronically at:

http://perso.univ-rennes1.fr/michel.coste/.
[34] L. van den Dries, Tame Topology and o-Minimal Structures, Cambridge, 1998.
[35] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford, 1965.
[36] R. Alam, S. Bora, R. Byers, M.L. Overton, Characterization and construction of the nearest defective matrix via coalescence of pseudospectral

components, Linear Algebra Appl. (2010) (in press).
[37] J.V. Burke, A.S. Lewis, M.L. Overton, Spectral conditioning and pseudospectral growth, Numer. Math. 107 (2007) 27–37.
[38] A.N. Malyshev, A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues, Numer. Math. 83 (1999) 443–454.
[39] J.W. Demmel, On condition numbers and the distance to the nearest ill-conditioned problem, Numer. Math. 51 (1987) 251–289.
[40] L.N. Trefethen, M. Embree, Spectra and Pseudospectra, Princeton, NJ, 2005.
[41] E. Mengi, Private communication, 2009.
[42] E. Mengi, M. Overton, Algorithms for the computation of the pseudospectral radius and the numerical radius of amatrix, IMA J. Numer. Anal. 25 (2005)

648–669.
[43] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J. Sci. Stat. Comput. 9 (1988) 875–881.
[44] S. Boyd, V. Balakrishnan, A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its

L∞-norm, Syst. Control Lett. 15 (1990) 1–7.
[45] T.G.Wright, EigTooL: a graphical tool for nonsymmetric eigenproblems, 2002; Available online at: http://web.comlab.ox.ac.uk/pseudospectra/eigtool/.

http://perso.univ-rennes1.fr/michel.coste/
http://perso.univ-rennes1.fr/michel.coste/
http://web.comlab.ox.ac.uk/pseudospectra/eigtool/

	Level set methods for finding critical points of mountain pass type
	Introduction
	A level set algorithm
	A locally superlinearly convergent algorithm
	Superlinear convergence of the local algorithm
	Further properties of the local algorithm
	Saddle points and criticality properties
	Wilkinson's problem: background
	Wilkinson's problem: implementation and numerical results
	Non-Lipschitz convergence and optimality conditions
	Acknowledgements
	References


