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We study randomized variants of two classical algorithms: coordinate descent for systems of linear equations and iterated
projections for systems of linear inequalities. Expanding on a recent randomized iterated projection algorithm of Strohmer and
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1. Introduction. The condition number of a problem measures the sensitivity of a solution to small pertur-
bations in its input data. For many problems that arise in numerical analysis, there is often a simple relationship
between the condition number of a problem instance and the distance to the set of ill-posed problems—those
problem instances whose condition numbers are infinite (Demmel [10]). For example, with respect to the prob-
lem of inverting a matrix A, it is known (see Horn and Johnson [21], for example) that if A is perturbed to
A+E for a sufficiently small matrix E, then

��A+E�−1−A−1�
�A−1� ≤ �A−1��E�+O��E�2��

Thus a condition measure for this problem may be taken as �A−1�. The classical Eckart-Young theorem (Eckart
and Young [15]) relates this condition measure to the distance to ill-posedness.

Theorem 1.1 (Eckart-Young). For any nonsingular matrix, A,

min
E
��E�� A+E is singular	= 1

�A−1� �

We are typically concerned with relative condition numbers as introduced by Demmel [10]. For example, with
respect to the problem of matrix inversion, the relative condition number is k�A� �= �A��A−1�, the commonly
used condition measure.
Condition numbers are also important from an algorithmic perspective. In the example of matrix inversion, the

sensitivity of a problem under perturbations could be relevant due to errors in either the initial problem data or
accumulated rounding error. Hence it is natural that condition numbers affect algorithm speed. For example, in
the context of linear programming, Renegar defined a condition measure based on the distance to ill-posedness
(Renegar [40])—similar to the Eckart-Young result—and showed its effect on the convergence rate of interior
point methods (Renegar [41]).
As another example, consider the problem of finding a solution to the system Ax= b
 where A is a positive-

definite matrix. It was shown by Akaike [1] that the steepest descent method is linearly convergent with rate
��k�A�− 1�/�k�A�+ 1��2 and that this bound is asymptotically tight for almost all choices of initial iterates.
Similarly, it is well known (see Golub and van Loan [16]) that the conjugate gradient method applied to the
same problem is also linearly convergent with rate �

√
k�A�− 1�/�√k�A�+ 1�.

From a computational perspective, a related and important area of study is that of error bounds. Given a subset
of a Euclidean space, an error bound is an inequality that bounds the distance from a test vector to the specified
subset in terms of some residual function that is typically easy to compute. An error bound can thus be used
both as part of a stopping rule during implementation of an algorithm as well as an aide in proving algorithmic
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convergence. A comprehensive survey of error bounds for a variety of problems arising in optimization can be
found in Pang [35].
With regard to the problem of solving a nonsingular linear system Ax= b, one connection between condition

measures and error bounds is immediate. Let x∗ be a solution to the system and let x be any other vector. Then

�x− x∗� = �A−1A�x− x∗�� = �A−1�Ax− b�� ≤ �A−1��Ax− b�

so the distance to the solution set is bounded by a constant multiple of the residual vector, �Ax− b�, and this
constant is the same one that appears in the context of conditioning and distance to infeasibility. As we discuss
later, these relationships are not necessarily confined to systems of linear equations.
Error bounds often make a prominent appearance in algorithmic convergence proofs. In particular, a compre-

hensive series of papers by Luo and Tseng in the early 1990s showed the unifying power of the error bound
idea in demonstrating linear convergence for a wide variety of algorithms applied to a rich class of problems.
Particularly relevant for this current work is Luo and Tseng’s elegant and novel proof of linear convergence
of the coordinate descent method for smooth convex minimization (see Luo and Tseng [26]), along with their
discussion of duality-based interpretations of this convergence, one example of which is the iterated projec-
tion algorithm for linear equations. This approach generalizes broadly, for example, to gradient projection and
reduced gradient schemes and matrix splitting algorithms (see Luo and Tseng [28, 29]), to nonconvex minimiza-
tion (see Luo and Tseng [31]), to composite and linearly constrained convex minimization (see Luo and Tseng
[27, 30]), and to variational inequalities (see Tseng [44]).
In the current work, as in Luo and Tseng’s development, we are interested in the linear convergence of some

basic algorithms and make fundamental use of the error bound idea. Our work differs from that development in
two ways: first, we aim to quantify the convergence rate explicitly in terms of natural linear-algebraic condition
numbers, and secondly, our (very simple) derivations of these explicit rates involve randomized versions of the
algorithms. These randomized methods are motivated by a recent iterated projection scheme for systems of
linear equations due to Strohmer and Vershynin [43].
The rest of the paper is organized as follows. In §2, we define some notation used throughout the rest of

this paper. In §3, we consider the problem of solving a linear system Ax = b and show that a randomized
coordinate descent scheme, implemented according to a specific probability distribution, is linearly convergent
with a rate expressible in terms of traditional conditioning measures. In §4, we build upon the work of Strohmer
and Vershynin [43] by considering randomized iterated projection algorithms for linear inequality systems. In
particular, we show how randomization can provide convergence rates in terms of the traditional Hoffman error
bound (Hoffman [20]) as well as in terms of Renegar’s distance to infeasibility (Renegar [39]). We remark,
as observed by Luo and Tseng [26], that since iterated projection algorithms can be interpreted, via duality,
as coordinate descent schemes, the Strohmer-Vershynin randomized projection method for linear equations is
simply a version of the randomized coordinate descent scheme of §3, but since the convergence proofs are so
simple and intuitive, we give both. In §5, we consider randomized iterated projection algorithms for general
convex sets and, under appropriate metric regularity assumptions, obtain local convergence rates in terms of the
modulus of regularity.
Classical deterministic versions of the simple algorithms we consider here have been widely studied, in part

due to the extreme simplicity of each iteration. Especially after Luo and Tseng’s work, the fact of their linear con-
vergence is well known. However, as remarked on linear systems of equations in Strohmer and Vershynin [43],
randomized versions are interesting for several reasons. The randomized iterated projection method for linear
equations from which this work originated may have some practical promise, even compared with conjugate gra-
dients; see, for example, Strohmer and Vershynin [43]. Furthermore, from a theoretical perspective (our emphasis
here) randomization provides a framework for simplifying the convergence analysis, allowing easy bounds on
the rates of linear convergence in terms of natural linear-algebraic condition measures, such as relative condition
numbers, Hoffman constants, and the modulus of metric regularity.

2. Notation. On the Euclidean space Rn, we denote the Euclidean norm by � · �. Let ei denote the column
vector with a one in the ith position and zeros elsewhere.
We consider m-by-n real matrices A. We denote the set of rows of A by �aT1 
 � � � 
 a

T
m	 and the set of columns

by �A1
 � � � 
An	. The spectral norm of A is the quantity �A�2 �= max�x�=1 �Ax�, and the Frobenius norm is
�A�F �=

∑
i
 j a

2
ij . Additionally, these norms satisfy

�A�F ≤
√
n�A�2� (1)
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For an arbitrary matrix, A, let �A−1�2 be the smallest constantM such that �Ax�2 ≥ 1/M�x�2 for all vectors x.
In the case m≥ n, if A has singular values �1 ≥ �2 ≥ · · · ≥ �n, then M can also be expressed as the reciprocal
of the minimum singular value �n, and, if A is invertible, this quantity equals the spectral norm of A−1.
The relative condition number of A is the quantity k�A� �= �A�2�A−1�2; related to this is the scaled condition

number introduced by Demmel [11], defined by ��A� �= �A�F �A−1�2. From this, it is easy to verify (using the
singular value decomposition, for example) the following relationship between condition numbers:

1≤ ��A�√
n

≤ k�A�� (2)

Now suppose the matrix A is n-by-n symmetric and positive-definite. The energy norm (or A-norm), denoted
� · �A, is defined by �x�A �=

√
xT Ax. The inequality

�x�2A ≤ �A−1�2 · �Ax�2 for all x ∈Rn (3)

is useful later. Furthermore, if A is simply positive-semidefinite, we can generalize inequality (3) as

xT Ax≤ 1
��A�

�Ax�2
 (4)

where ��A� is the smallest nonzero eigenvalue of A. We denote the trace of A by trA: It satisfies the inequality

�A�F ≥
trA√
n
� (5)

Given a nonempty closed convex set S, let PS�x� be the projection of x onto S: that is, PS�x� is the vector y
that is the optimal solution to minz∈S �x− z�2. Additionally, define the distance from x to a set S by

d�x
S�=min
z∈S

�x− z�2 = �x−PS�x��� (6)

The following useful inequality is standard:

�y− x�2−�PS�y�− x�2 ≥ �y−PS�y��2 for all x ∈ S
 y ∈Rn� (7)

3. Randomized coordinate descent. Let A be an n-by-n symmetric positive-definite matrix. We consider a
linear system of the form Ax= b, with solution x∗ =A−1b. We consider the equivalent problem of minimizing
the strictly convex quadratic function

f �x�= 1
2x

T Ax− bT x


and we note the standard relationship

f �x�− f �x∗�= 1
2�x− x∗�2A� (8)

Suppose our current iterate is x and we obtain a new iterate x+ by performing an exact line search in the
nonzero direction d: that is, x+ is the solution to minx+Rd f . This gives us

x+ = x+ �b−Ax�T d

dT Ad
d

and

f �x+�− f �x∗�= 1
2

∥∥x+ − x∗
∥∥2
A
= 1
2

∥∥x− x∗
∥∥2
A
− ��Ax− b�T d�2

2dT Ad
� (9)

One natural choice of a set of easily computable search directions is to choose d from the set of canonical unit
vectors, �e1
 � � � 
 en	. Note that, when using search direction ei, we can compute the new point

x+ = x+ bi − aTi x

aii
ei


using only 2n+2 arithmetic operations. If the search direction is chosen at each iteration by successively cycling
through the set of coordinate directions, then the algorithm is known to be linearly convergent but with a rate not
easily expressible in terms of typical matrix quantities (see Golub and van Loan [16] or Quarteroni et al. [38]).
However, by choosing a coordinate direction as a search direction randomly according to an appropriate prob-
ability distribution, we can obtain a convergence rate in terms of the scaled or relative condition numbers. In
considering the following algorithm, we will weaken our assumptions and merely require the matrix A to be
positive-semidefinite.
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Algorithm: Randomized coordinate descent. Consider a system Ax= b for an n-by-n nonzero symmetric
positive-semidefinite matrix A, and let x0 ∈Rn be an arbitrary starting point. For j = 0
1
2
 � � � 
 compute

xj+1 = xj +
bi − aTi xj

aii
ei


where ei is the ith canonical unit vector, and at each iteration j , the index i is chosen independently at random
from the set �1
 � � � 
 n	, with distribution

P�i= k	= akk
trA

�

Notice in the algorithm that the matrix A may be singular but that, nonetheless, aii > 0 almost surely. If A
is merely positive-semidefinite, solutions of the system Ax= b coincide with minimizers of the function f , and
consistency of the system is equivalent to f being bounded below. We now have the following result.

Theorem 3.1. Consider a consistent system Ax = b for an n-by-n nonzero symmetric positive-semidefinite
matrix A, and define the corresponding objective and error by

f �x� = 1
2x

T Ax− bT x


$�x� = f �x�−min f �
Then the randomized coordinate descent algorithm is linearly convergent in expectation: indeed, for each iter-
ation j = 0
1
2
 � � � ,

E%$�xj+1� � xj&≤
(
1− ��A�

trA

)
$�xj��

In particular, if A is positive-definite and x∗ =A−1b, we have the equivalent property

E
[∥∥xj+1− x∗

∥∥2
A
� xj

]≤(
1− 1

�A−1�2trA
)∥∥xj − x∗

∥∥2
A
�

Hence, the expected reduction in the squared error �xj − x∗�2A is at least a factor

1− 1√
n��A�

≤ 1− 1
nk�A�

at each iteration.

Proof. We make basic use of Equation (8). Note that if coordinate direction ei is chosen during iteration j ,
then Equation (9) shows

f �xj+1�= f �xj�−
�bi − aTi xj�

2

2aii
�

Hence, using

E%f �xj+1� � xj&= f �xj�−
n∑
i=1

aii
tr�A�

�bi − aTi xj�
2

2aii



we deduce
E%f �xj+1� � xj&= f �xj�−

1
2trA

�Axj − b�2� (10)

Using inequality (4) (with the vector x replaced by the vector xj −x∗ for any solution x∗) and Equation (8), we
easily verify

1
2�Axj − b�2 ≥ ��A�$�xj�


and the first result follows. Applying Equation (8) provides the second result. The final result comes from
applying inequalities (1), (2), and (5). �

Consider for a moment the case when the system Ax= b is inconsistent. In that case, the quantity �Ax− b�
is bounded below by some strictly positive constant. Equation (10), therefore, implies the existence of a constant
' > 0 such that

E%f �xj+1� � xj&≤ f �xj�− '
 for all j�

We know f �xj+1�≤ f �xj�. The description of the algorithm implies that, at each iteration, the probability that
we observe f �xj+1�≤ f �xj�− ' is at least some fixed positive constant. Hence f �xj� ↓−� almost surely.
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The simple idea behind the proof of Theorem 3.1 is the main engine driving the remaining results in this
paper. Fundamentally, the idea is to choose a probability distribution so that the expected distance to the solution
from the new iterate is the distance to the solution from the old iterate minus some multiple of a residual. Then,
using some type of error bound to bound the distance to a solution in terms of the residual, we obtain expected
linear convergence of the algorithm.
Before we expand upon the previous result, it is worth considering the probabilistic consequences of linear

convergence in expectation. Specifically, as demonstrated in the following theorem, this implies the iterates
converge almost surely to the solution set in Theorem 3.1.

Proposition 3.1. Consider a constant r ∈ %0
1� and a sequence of nonnegative random variables �Yj	j≥0
satisfying

Yj+1 ≤ Yj


E%Yj+1 � Yj&≤ rYj


and consider that Y0 is bounded above almost surely. Then limj→� Yj = 0 almost surely.

Proof. By assumption, Yj is nonnegative and monotonically decreasing, implying that Yj converges to some
nonnegative random variable Y almost surely (see, for example, Billingsley [8]). Furthermore, we know that the
conditional expectation of Yj given Y0 satisfies the following inequality:

E%Yj+1 � Y0&=E%E%Yj+1 � Yj& � Y0&≤E%rYj � Y0&= rE%Yj � Y0&
by assumption. By induction, it follows that

E%Yj � Y0&≤ rj Y0�

Finally, applying the dominated convergence theorem, it follows that

E%Y � Y0&=E%lim
j
Yj � Y0&= lim

j
E%Yj � Y0&≤ lim

j
r jY0 = 0�

From E%Y � Y0&= 0 and Y ≥ 0 almost surely, we can conclude that Y = 0 almost surely. �

Specifically, choosing S to be the set of minimizers of f �x�, as defined in Theorem 3.1, and letting Yj =
mins∈S�xj − s�T A�xj − s�, we obtain that the iterates �xj	j≥0 generated by the randomized coordinate descent
algorithm satisfy Axj → b almost surely.
Now let us consider the more general problem of finding a solution to a linear system Ax = b where A is

an m× n matrix. More generally, since the system might be inconsistent, we seek a “least squares solution”
by minimizing the function �Ax − b�2. The minimizers are exactly the solutions of the positive-semidefinite
system ATAx = AT b, to which we could easily apply the previous algorithm; however, as usual, we wish to
avoid computing the new matrix ATA explicitly. Instead, we can proceed as follows.

Algorithm: Nonsymmetric randomized coordinate descent. Consider a linear system Ax = b for a
nonzero m-by-n matrix A. Let x0 ∈Rn be an arbitrary initial point and let r0 = b−Ax0 be the initial residual.
For each j = 0
1
 � � � 
 compute

+j =
AT
i rj

�Ai�2



xj+1 = xj ++jei


rj+1 = rj −+jAi


where, at each iteration j , the index i is chosen independently at random from the set �1
 � � � 
 n	, with distribution

P�i= k	= �Ak�2
�A�2F

�k= 1
2
 � � � 
 n��

(In the formula for +j , notice by assumption that Ai �= 0 almost surely.)
Note that the step size at each iteration can be obtained by directly minimizing the residual in the respective

coordinate direction. However, the algorithm can also be viewed as the application of the algorithm for positive
definite systems on the system of normal equations, ATAx = AT b, without actually having to compute the
matrix ATA. Given the motivation of directly minimizing the residual, we would expect that the nonsymmetric
randomized coordinate descent algorithm would converge to a least-squares solution, even in the case where the
underlying system is inconsistent. The next result shows that this is, in fact, the case.
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Theorem 3.2. Consider any linear system Ax= b, where the matrix A is nonzero. Define the least-squares
residual and the error by

f �x�= 1
2�Ax− b�2


$�x�= f �x�−min f �

Then the nonsymmetric randomized coordinate descent algorithm is linearly convergent in expectation to a least
squares solution for the system: for each iteration j = 0
1
2
 � � � 


E%$�xj+1� � xj&≤
(
1− ��ATA�

�A�2F

)
$�xj��

In particular, if A has full column rank, we have the equivalent property

E%�xj+1− x̂�2AT A � xj&≤
(
1− 1

��A�2

)
�xj − x̂�2AT A


where x̂= �AT A�−1AT b is the unique least-squares solution.

Proof. It is easy to verify, by induction on j , that the iterates xj are exactly the same as the iterates generated
by the randomized coordinate descent algorithm, when applied to the positive-semidefinite system ATAx=AT b,
and furthermore, that the residuals satisfy rj = b−Axj for all j = 0
1
2
 � � � . Hence, the results follow directly
from Theorem 3.1. �

By the coordinate descent nature of this algorithm, once we have computed the initial residual r0 and column
norms ��Ai�2	ni=1, we can perform each iteration in O�n� time, just as in the positive-definite case. Specifically,
this new iteration takes 4n+ 1 arithmetic operations, compared with 2n+ 2 for the positive-definite case.
For a computational example, we apply the nonsymmetric randomized coordinate descent algorithm to random

500×n matrices, where each element of A and b is an independent Gaussian random variable and we let n take
values 50, 100, 150, and 200; see Figure 1.
Note that in the above examples, the theoretical bound provided by Theorem 3.2 predicts the actual behavior

of the algorithm reasonably well.
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Figure 1. Nonsymmetric randomized coordinate descent.
Note. Negative slopes decrease with n.
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4. Randomized iterated projections. Iterated projection algorithms share important characteristics with
coordinate descent algorithms and indeed may in some sense be considered dual to each other (Luo and Tseng
[26]). Much convergence theory exists; a comprehensive overview on iterated projections can be found in
Deutsch [12]. Randomized iterated projection methods have also been considered by many authors in a variety of
mathematical settings. Convergence results for very general frameworks can be found in Amemiya and Ando [3],
Bruck [9], Dye et al. [14], and Bauschke [4], among others. Results on randomized algorithms for convex
feasibility problems in Rn have been further developed by Polyak [37] and Amaldi et al. [2], for example,
including convergence theory for infeasible systems (see also Luo [25] and Luo and Tseng [32] for connections
with the incremental gradient method). However, even for linear systems of equations, standard developments do
not provide bounds on convergence rates in terms of natural linear-algebraic condition measures. By contrast, a
recent paper of Strohmer and Vershynin [43] obtained a natural convergence rate via the following randomized
iterated projection algorithm, which also provided the motivation for our work in the previous section.

Algorithm: Randomized iterated projections. Consider a linear system Ax = b for a nonzero m × n
matrix A. Let x0 ∈Rn be an arbitrary initial point. For each j = 0
1
 � � � 
 compute

xj+1 = xj −
aTi xj − bi

�ai�2
ai


where, at each iteration j , the index i is chosen independently at random from the set �1
 � � � 
m	, with
distribution

P�i= k	= �ak�2
�A�2F

�k= 1
2
 � � � 
m��

Notice that the new iterate xj+1 is simply the orthogonal projection of the old iterate xj onto the hyperplane
�x� aTi x= bi	. At first sight, the choice of probability distribution may seem curious, since we could rescale the
equations arbitrarily without having any impact on the projection operations. However, following Strohmer and
Vershynin [43], we emphasize that the aim is to understand linear convergence rates in terms of linear-algebraic
condition measures associated with the original system, rather than in terms of geometric notions associated
with the hyperplanes. This randomized algorithm has the following behavior.

Theorem 4.1 (Strohmer-Vershynin [43]). Given any matrix A with full column rank, suppose the lin-
ear system Ax = b has solution x∗. Then the randomized iterated projections algorithm converges linearly in
expectation: for each iteration j = 0
1
2
 � � � ,

E%�xj+1− x∗�22 � xj&≤
(
1− 1

��A�2

)
�xj − x∗�22�

As we remarked earlier, following observations of Luo and Tseng, iterated projections and coordinate descent
are related via duality. Consider the problem of finding the least-squares solution to the system Ax = b above.
The dual of the corresponding optimization problem

min
x

{
1
2�x�2� Ax= b

}
is, after a change of sign, the strictly convex quadratic minimization problem

min
y

1
2�AT y�2− bT y�

If the randomized coordinate descent scheme of the previous section generates the sequence of points �yj	, then
it is not hard to check that the points xj = AT yj comprise exactly the sequence generated by the Strohmer-
Vershynin method, the randomized iterated projections algorithm, giving a proof of Theorem 4.1. However, since
a direct proof is so simple and intuitive, we essentially reproduce it here, as a special case of a more general
result.
We seek to generalize the above algorithm and convergence result to systems of linear inequalities of the form{

aTi x≤ bi �i ∈ I≤�

aTi x= bi �i ∈ I=�


(11)

where the disjoint index sets I≤ and I= partition the set �1
2
 � � � 
m	. To do so, staying with the techniques
of the previous section, we need a corresponding error bound for a system of linear inequalities. First, given a
vector x ∈ Rn, define the vector x+ by �x+�i =max�xi
0	. Then a starting point for this subject is a result by
Hoffman [20].
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Theorem 4.2 (Hoffman [20]). For any right-hand side vector b ∈Rm, let Sb be the set of feasible solutions
of the linear system (11). Then there exists a constant L, independent of b, with the following property:

x ∈Rn and Sb �= � ⇒ d�x
Sb�≤ L�e�Ax− b��
 (12)

where the function e � Rm →Rm is defined by

e�y�i =
{
y+i �i ∈ I≤�

yi �i ∈ I=��

In the above result, each component of the vector e�Ax−b� indicates the error in the corresponding inequality
or equation. In particular e�Ax−b�= 0 if and only if x ∈ Sb. Thus Hoffman’s result provides a linear bound for
the distance from a trial point x to the feasible region in terms of the size of the a posteriori error associated
with x.
We call the minimum constant L such that property (12) holds, the Hoffman constant for the system (11).

Several authors give geometric or algebraic meaning to this constant, or exact expressions for it, including Güler
et al. [18], Ng and Zheng [34], Li [24], Ho and Tunçel [19], Zhang [45], and the survey of Pang [35]. In the
case of linear equations (that is, I≤ =�), an easy calculation using the singular value decomposition shows that
the Hoffman constant is just the reciprocal of the smallest nonzero singular value of the matrix A, and hence
equals �A−1�2 when A has full column rank.
For the problem of finding a solution to a system of linear inequalities, we consider a randomized algorithm

generalizing the randomized iterated projections algorithm.

Algorithm: Randomized iterated projections for inequalities. Consider the system of inequalities (11).
Let x0 be an arbitrary initial point. For each j = 0
1
 � � � 
 compute

.j =
{
�aTi xj − bi�

+ �i ∈ I≤�

aTi xj − bi �i ∈ I=�


xj+1 = xj −
.j

�ai�2
ai


where, at each iteration j , the index i is chosen independently at random from the set �1
 � � � 
m	, with
distribution

P�i= k	= �ak�2
�A�2F

�k= 1
2
 � � � 
m��

In the above algorithm, notice that .j = e�Axj − b�i and that xj+1 is just the orthogonal projection onto the
halfspace or hyperplane defined by the constraint with index i. We can now generalize Theorem 4.1 as follows.

Theorem 4.3. Suppose the system (11) has nonempty feasible region S. Then the randomized iterated
projections for inequalities algorithm converges linearly in expectation: for each iteration j = 0
1
2
 � � � ,

E%d�xj+1
 S�
2 � xj&≤

(
1− 1

L2�A�2F

)
d�xj
 S�

2


where L is the Hoffman constant.

Proof. Note that if the index i is chosen during iteration j , then it follows that

∥∥xj+1−PS�xj+1�
∥∥2
2
≤ ∥∥xj+1−PS�xj�

∥∥2
2
=

∥∥∥∥xj − e�Axj − b�i

�ai�2
ai −PS�xj�

∥∥∥∥
2

2

= ∥∥xj −PS�xj�
∥∥2
2
+ e�Axj − b�2i

�ai�2
− 2e�Axj − b�i

�ai�2
aTi �xj −PS�xj���

Note that PS�xj� ∈ S. Hence, if i ∈ I≤, then aTi PS�xj�≤ bi, and e�Axj − b�i ≥ 0, so
e�Axj − b�ia

T
i �xj −PS�xj��≥ e�Axj − b�i�a

T
i xj − bi�= e�Axj − b�2i �
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On the other hand, if i ∈ I=, then aTi PS�xj�= bi, so

e�Axj − b�ia
T
i �xj −PS�xj��= e�Axj − b�i�a

T
i xj − bi�= e�Axj − b�2i �

Putting these two cases together with the previous inequality shows

d�xj+1
 S�
2 ≤ d�xj
 S�

2− e�Axj − b�2i
�ai�2

�

Taking the expectation with respect to the specified probability distribution, it follows that

E%d�xj+1
 S�
2 � xj&≤ d�xj
 S�

2− �e�Axj − b��2
�A�2F




and the result now follows by the Hoffman bound. �

Since Hoffman’s bound is not independent of the scaling of the matrix A, it is not surprising that a normalizing
constant such as the �A�2F term appears in the result.
For a computational example, we consider linear inequality systems Ax ≤ b, where the elements of A are

independent standard Gaussian random variables and b is chosen so that the resulting system has a nonempty
interior. We consider matrices A that are 500× n, letting n take values 50, 100, 150, and 200. We then apply
the randomized iterated projections for inequalities algorithm to these problems and observe the computational
results in Figure 2.
Another natural conditioning measure for linear inequality systems is the distance to infeasibility, defined

by Renegar [39] and shown (Renegar [41]) to govern the convergence rate of interior point methods for linear
programming. It is interesting, therefore, from a theoretical perspective, to obtain a linear convergence rate for
iterated projection algorithms in terms of this condition measure as well. For simplicity, we concentrate on the
inequality case. To begin, let us recall the following results.
The distance to infeasibility (Renegar [39]) for the system Ax≤ b is the number

/= inf
{
max��0A�2
�0b�	� �A+0A�x≤ b+0b is infeasible

}
�

Theorem 4.4 (Renegar [39, Theorem 1.1]). Consider the system Ax ≤ b. Suppose the distance to infea-
sibility / > 0. Then there exists a point x̂ in the feasible region S satisfying �x̂� ≤ �b�//. Furthermore, any
point x ∈Rn satisfies the inequality

d�x
S�≤ max�1
�x�	
/

��Ax− b�+��
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Figure 2. Randomized iterated projections for inequalities.
Note. Negative slopes decrease with n.
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Using this, we can bound the linear convergence rate for the randomized iterated projections for inequalities
algorithm in terms of the distance to infeasibility, as follows. As before, let S = �x� Ax ≤ b	. Suppose we start
the algorithm at the initial point x0 = 0 and notice that �xj − x̂� is nonincreasing in j by inequality (7). Applying
Theorem 4.4, we see that for all j = 1
2
 � � � 


�xj� ≤ �x̂�+�xj − x̂� ≤ �x̂�+�x0− x̂� ≤ 2�b�
/




so

d�xj
 S�≤max
{
1
/


2�b�
/2

}
��Axj − b�+��

Using this inequality in place of Hoffman’s bound in the proof of Theorem 4.3 gives

E%d�xj+1
 S�
2 � xj&≤

[
1− 1

�A�2F �max� 1/ 
 2�b�/2
	�2

]
d�xj
 S�

2�

Although this bound may not be the best possible (and, in fact, it may not be as good as the bound provided in
Theorem 4.3), this result simply emphasizes a relationship between algorithm speed and conditioning measures
that appears naturally in other contexts. When equality constraints are present, an analogous argument applies,
with the residual �Ax−b�+ replaced by e�Ax−b�, as in Hoffman’s theorem (Theorem 4.2.). In the next section,
we proceed with these ideas in a more general framework.

5. Metric regularity and local convergence. The previous section concerned global rates of linear conver-
gence. If, instead, we are interested in local rates, we can re-examine a generalization of our problem through
an alternative perspective of set-valued mappings. Consider a set-valued mapping 1� Rn ⇒Rm and the problem
of solving the associated constraint system of the form b ∈1�x� for the unknown vector x. For example, finding
a feasible solution to Ax≤ b is equivalent to finding an x such that

b ∈Ax+Rm
+� (13)

Related to this is the idea of metric regularity of set-valued mappings. We say the set-valued mapping 1 is
metrically regular at x̄ for b̄ ∈1�x̄� if there exists 2 > 0 such that

d�x
1−1�b��≤ 2d�b
1�x�� for all �x
 b� near �x̄
 b̄�
 (14)

where 1−1�b�= �x� b ∈1�x�	. Furthermore, the modulus of regularity is the infimum of all constants 2 such
that equation (14) holds. Metric regularity is strongly connected with a variety of ideas from variational analysis;
a good background reference is Rockafellar and Wets [42].
Metric regularity generalizes the error bounds discussed in previous sections at the expense of only guaran-

teeing a bound in local terms. For example, if 1 is a single-valued linear map, then the modulus of regularity
(at any x̄ for any b̄) corresponds to the typical conditioning measure �1−1� (with �1−1� = � implying the
map is not metrically regular), and if 1 is a smooth single-valued mapping, then the modulus of regularity is
the reciprocal of the minimum singular value of the Jacobian, 31�x�. From an alternative perspective, metric
regularity provides a framework for generalizing the Eckart-Young result on the distance to ill-posedness of
linear mappings cited in Theorem 1.1. Specifically, if we define the radius of metric regularity at x̄ for b̄ for a
set-valued mapping 1 between finite dimensional spaces by

rad1�x̄ � b̄�= inf
{�E�� 1+E not metrically regular at x̄ for b̄+E�x̄�

}



where the infimum is over all linear mappings E, then one obtains the strikingly simple relationship (Dontchev
et al. [13])

modulus of regularity of 1 at x̄ for b̄= 1

rad1�x̄ � b̄� 
 (15)

assuming only that 1 has a closed graph.
We will not be using the above result directly. Here, we simply use the fundamental idea of metric regularity

that says that the distance from a point to the solution set, d�x
1−1�b��, is locally bounded by some constant
times a “residual.” For example, in the case where 1 corresponds to the linear inequality system (13), it follows
that d�b
1�x��= ��Ax− b�+�, implying that the modulus of regularity is in fact a global bound and equal to
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the Hoffman bound. More generally, we wish to emphasize that metric regularity ties together several of the
ideas from previous sections at the expense of those results now, only holding locally instead of globally.
In what follows, assume that all distances are Euclidean distances. We wish to consider how the modulus of

regularity of 1 affects the convergence rate of iterated projection algorithms. We remark that linear convergence
for iterated projection methods on convex sets has been very widely studied. For example, for two closed, convex
sets, regularity conditions for linear convergence were proved by Bauschke and Borwein [6], generalizing results
found in Gubin et al. [17]. Broad surveys of the topic for multiple sets can be found in Deutsch [12] and
Bauschke and Borwein [7]. Our aim here is to observe, by analogy with previous sections, how randomization
makes the linear convergence rate easy to interpret in terms of metric regularity.
Let S1
 S2
 � � � 
 Sm be closed convex sets in a Euclidean space E such that

⋂
i Si �= �. Then, in a manner

similar to Lewis et al. [23], we can endow the product space Em with the inner product

〈
�u1
 u2
 � � � 
 um�
 �v1
 v2
 � � � 
 vm�

〉= m∑
i=1

�ui
 vi�

and consider the set-valued mapping 1� E→Em given by

1�x�= �S1− x
S2− x
 � � � 
 Sm− x�� (16)

Then it clearly follows that x̄ ∈ ⋂
i Si ⇔ 0 ∈ 1�x̄�. Under appropriate regularity assumptions, we obtain the

following local convergence result.

Theorem 5.1. Suppose the set-valued mapping 1 given by Equation (16) is metrically regular at x̄ for 0
with regularity modulus 2. Let 2̄ be any constant strictly larger than 2 and let x0 be any initial point sufficiently
close to x̄. Furthermore, suppose that xj+1 = PSi �xj� with probability 1/m for i= 1
 � � � 
m. Then

E%d�xj+1
 S�
2 � xj&≤

(
1− 1

m2̄2

)
d�xj
 S�

2�

Proof. First, note that by inequality (7), the distance �xj − x̄� is nonincreasing in j . Hence, if x0 is suffi-
ciently close to x̄, then xj is as well for all j ≥ 0. Then, again using inequality (7) (applied to the set Si), we
have, for all points x ∈ S ⊂ Si,

�xj − x�2−�xj −PSi �xj��2 ≥ �PSi �xj�− x�2�
Taking the minimum over x ∈ S, we deduce

d�xj
 S�
2−�xj −PSi �xj��2 ≥ d�PSi �xj�
 S�

2�

Hence

E%d�xj+1
 S�
2 � xj& =

1
m

m∑
i=1

d�PSi �xj�
 S�
2

≤ 1
m

m∑
i=1

[
d�xj
 S�

2−d�xj
 Si�
2
]

= d�xj
 S�
2− 1

m

m∑
i=1

d�xj
 Si�
2

= d�xj
 S�
2− 1

m
d�0
1�xj��

2

≤
(
1− 1

m2̄2

)
d�xj
 S�

2


using the definition of metric regularity. �

It is well known that metric regularity at x̄ for 0 is a stronger assumption than necessary for the linear con-
vergence of iterated projection schemes. For global convergence, “bounded linear regularity” suffices (Bauschke
and Borwein [7, Theorem 5.7]). The above local convergence result is valid as long as Equation (14) holds for
all points x near x̄ with b̄ = 0 fixed, as opposed to the metric regularity assumption, which requires it to hold
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for all b near b̄ as well. For more on this distinction, see the comparison of metric regularity and bounded linear
regularity in Bauschke [5, Remark 3.8] and the discussion of metric subregularity in Leventhal [22]. Nonetheless,
for the purposes of the current discussion, we maintain our focus on metric regularity, which is a more robust
general-purpose variational-analytic tool, quantifiable by calculus-like coderivative formulae (Rockafellar and
Wets [42, Theorem 9.40]), and generalizing traditional condition measures such as the distance to infeasibility
via the radius formula (15).
For a moment, let m= 2 and consider the sequence of iterates �xj	j≥0 generated by the randomized iterated

projection algorithm. By idempotency of the projection operator, there is no benefit to projecting onto the same
set in two consecutive iterations, so the subsequence consisting of different iterates corresponds exactly to that
of the nonrandomized iterated projection algorithm. In particular, if xj ∈ S1, then

d�PS2�xj�
 S�
2 ≤ d�xj
 S�

2−d�xj
 S2�
2 = d�xj
 S�

2− %d�xj
 S2�
2+d�xj
 S1�

2&


since d�xj
 S1�= 0. This gives us the following corollary, which also follows through more standard deterministic
arguments.

Corollary 5.1. If 1 is metrically regular at x̄ for 0 with regularity modulus 2 and 2̄ is larger than 2,
then for x0 sufficiently close to x̄, the 2-set iterated projection algorithm is linearly convergent and

d�xj+1
 S�
2 ≤

(
1− 1

2̄2

)
d�xj
 S�

2�

Note that this is very similar to a result of Bauschke and Borwein [6] under a slightly different regularity
assumption. Furthermore, consider the following refined version of the m-set randomized algorithm. Suppose
x0 ∈ S1 and i0 = 1. Then for j = 1
2
 � � � 
 let ij be chosen uniformly at random from �1
 � � � 
m	\�ij−1	 and
xj+1 = PSij

�xj�. Then we obtain the following similar result.

Corollary 5.2. If 1 is metrically regular at x̄ for 0 with regularity modulus 2 and 2̄ is larger than 2, then
for x0 sufficiently close to x̄, the refined m-set randomized iterated projection algorithm is linearly convergent
in expectation and

E%d�xj+1
 S�
2 � xj
 ij−1&≤

(
1− 1

�m− 1�2̄2
)
d�xj
 S�

2�

A simple but effective product space formulation by Pierra [36] has the benefit of reducing the problem of
finding a point in the intersection of finitely many sets to the problem of finding a point in the intersection of
two sets. Using the notation above, we consider the closed set in the product space given by

T = S1× S2× · · ·× Sm

and the subspace
L= �Ax� x ∈E	


where the linear mapping A� E → Em is defined by Ax = �x
 x
 � � � 
 x�. Again, notice that x̄ ∈ ⋂
i Si ⇔

�x̄
 � � � 
 x̄� ∈ T ∩L. One interesting aspect of this formulation is that projections in the product space Em relate
back to projections in the original space E by

�z1
 � � � 
 zm� ∈ PT �Ax� ⇔ zi ∈ PSi �x� �i= 1
2
 � � � 
m�


�PL�z1
 � � � 
 zm��i = 1
m
�z1+ z2+ · · ·+ zm� �i= 1
 � � � 
m��

This formulation provides a nice analytical framework. We can use the above equivalence of projections to
consider the method of averaged projections directly, defined as follows.

Algorithm: Averaged projections. Let S1
 � � � 
 Sm ⊆E be nonempty closed convex sets. Let x0 be an initial
point. For j = 1
2
 � � � , let

xj+1 =
1
m

m∑
i=1

PSi �xj��

Simply put, at each iteration, the algorithm projects the current iterate onto each set individually and takes
the average of those projections as the next iterate. In the product space formulation, this is equivalent to
xj+1 = PL�PT �xj��. Expanding on the work of Pierra [36], additional convergence theory for this algorithm has
been examined by Bauschke and Borwein [6]. Under appropriate regularity conditions, the general idea is that
convergence of the iterated projection algorithm for two sets implies convergence of the averaged projection
algorithm for m sets. In a similar sense, we prove the following result in terms of randomized projections.
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Theorem 5.2. Suppose S =⋂m
i=1 Si is nonempty. If the randomized projection algorithm of Theorem 5.1 is

linearly convergent in expectation with rate +, then so is the averaged projections algorithm.

Proof. Let xj be the current iterate, let x
AP
j+1 be the new iterate in the method of averaged projections, and

let xRPj+1 be the new iterate in the method of uniformly randomized projections. Then note that

xAPj+1 =
1
m

m∑
i=1

PSi �xj�=E%xRPj+1&�

By convexity of the Si’s, it follows that

d�xAPj+1
 S�= d�E%xRPj+1 � xj&
 S�≤E%d�xRPj+1
 S� � xj&≤ +d�xj
 S�

by Jensen’s inequality. �

Hence, the method of averaged projections converges no more slowly than the method of uniformly random
projections. In particular, under the assumptions of Theorem 5.1, the method of averaged projections converges
with rate no larger than 1− 1/m2̄2.
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