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GENERIC NONDEGENERACY IN CONVEX OPTIMIZATION

DMITRIY DRUSVYATSKIY AND ADRIAN S. LEWIS

(Communicated by Tatiana Toro)

Abstract. We show that minimizers of convex functions subject to almost
all linear perturbations are nondegenerate. An analogous result holds more
generally for lower-C2 functions.

1. Introduction

In this work we study the nature of minimizers of “typical” convex functions. We
model this question by considering a fixed extended-real-valued convex function f
and then studying properties of minimizers of the perturbed function x �→ fv(x) =
f(x)− vTx that hold “generically”, by which we mean for almost all values of the
data vector v in Rn (in the sense of Lebesgue measure).

Classical theory shows that, given a proper convex function f , the perturbed
function fv typically has at most one minimizer. To see this, note first that we may
assume f is closed, since any minimizer of f also minimizes its closure. Now we
observe that the Fenchel conjugate f∗ is differentiable almost everywhere on the in-
terior of its domain, by Rademacher’s theorem (see for example [9, Theorem 9.60]),
so for almost all vectors v, the subdifferential ∂f∗(v) is either single-valued or empty.
The result now follows, since this subdifferential coincides with the set (∂f)−1(v),
which is exactly the set of minimizers of fv.

Our aim is to strengthen this classical result. Minimizers x of the perturbed
function fv are characterized by the property that the vector zero lies in the sub-
differential ∂fv(x). We prove, for almost all vectors v, that the minimizer x is
not only unique but also nondegenerate, by which we mean that zero lies in the
relative interior of the subdifferential: 0 ∈ ri∂fv(x) (or equivalently, the positive
span R+∂fv(x) is a subspace). The proof, following an idea of [7], uses a result in
geometric measure theory due to Larman [5].

As an example, consider the standard linear programming problem

max
x∈Rn

{
vTx : aTi x ≤ bi (i = 1, 2, . . . ,m)

}
,
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for given vectors ai ∈ Rn and scalars bi ∈ R. We can restate this problem as
minimizing the perturbed function fv corresponding to the original function f that
takes the value zero on the feasible region and +∞ elsewhere. Consider an optimal
solution x̄ and the corresponding index set of active constraints, I = {i : aTi x̄ = bi}.
Then we have

∂fv(x̄) = −v + {
∑
i∈I

λiai : λi ≥ 0},

ri∂fv(x̄) = −v + {
∑
i∈I

λiai : λi > 0}.

Thus the minimizer x̄ of fv is nondegenerate exactly when there exists a dual-
feasible solution λ ∈ Rm satisfying strict complementary slackness. We hence
recover the well-known fact that, for almost all objective functions, if a linear
program has an optimal solution, then that solution is unique and furthermore
corresponds to a strictly complementary-slack dual solution.

For convex functions, critical points (those at which zero is a subgradient) co-
incide with minimizers. For nonconvex functions, we can more generally consider
nondegeneracy of critical points. It transpires that our result on typical nonde-
generacy extends in particular to all lower-C2 functions (those functions locally
representable as differences of convex functions and convex quadratics). However,
in more general contexts the result may fail. The classical generalization of the
subdifferential of a convex function is the Clarke generalized gradient [4], but [3]
presents a locally Lipschitz function f : R → R, whose Clarke generalized gradient
∂cf at any point x ∈ R is the interval [−x, x]. In this case, the perturbed function
fv has a degenerate critical point for every nonzero value of v.

2. Preliminaries

2.1. Variational analysis. We recall some standard notions from variational anal-
ysis (see for example [9]). Consider the extended real line R := R∪{−∞}∪{+∞}.
We say that an extended real-valued function is proper if it is never {−∞} and is
not always {+∞}.

For a function f : Rn → R, we define the domain of f to be

dom f = {x ∈ Rn : f(x) < +∞},
and we define the epigraph of f to be

epi f = {(x, r) ∈ Rn ×R : r ≥ f(x)}.
A function is convex when its epigraph is convex and is closed when its epigraph is
closed. Throughout, we will use | · | to denote the standard Euclidean norm.

Definition 2.1. Consider a set S ⊂ Rn and a point x̄ ∈ S. The regular normal
cone to S at x̄, denoted N̂S(x̄), consists of all vectors v ∈ Rn such that

〈v, x− x̄〉 ≤ o(|x− x̄|) for x ∈ S,

where we denote by o(|x− x̄|) for x ∈ S a term with the property that

o(|x− x̄|)
|x− x̄| → 0

when x
S→ x̄ with x �= x̄.
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Definition 2.2. Consider a set S ⊂ Rn and a point x̄ ∈ S. The limiting normal
cone to S at x̄, denoted NS(x̄), consists of all vectors v ∈ Rn such that there are

sequences xr
S→ x̄ and vr → v with vr ∈ N̂S(xr).

In the presence of convexity, normal cones have a much simpler form.

Theorem 2.3 ([9, Theorem 6.9]). For a convex set S ⊂ Rn and a point x̄ ∈ S, the
regular and the limiting normal cones coincide and consist of all vectors v ∈ Rn

such that
〈v, x− x̄〉 ≤ 0 for all x ∈ S.

Normal cones allow us to study geometric objects. We now define subdifferen-
tials, which allow us to analyze behavior of functions.

Definition 2.4. Consider a function f : Rn → R and a point x̄ ∈ Rn where f
is finite. The regular and the limiting subdifferentials of f at x̄, respectively, are
defined by

∂̂f(x̄) =
{
v ∈ Rn : (v,−1) ∈ N̂epi f (x̄, f(x̄))

}
,

∂f(x̄) =
{
v ∈ Rn : (v,−1) ∈ Nepi f (x̄, f(x̄))

}
.

If the function f is convex, both subdifferentials reduce to the classical convex
subdifferential {

v ∈ Rn : 〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ Rn
}
.

Remark 2.5. For x ∈ Rn where f(x) is not finite, we follow the convention that

∂̂f(x) = ∂f(x) = ∅. The regular and the limiting subdifferentials are always closed
sets, and the regular subdifferential is convex.

Subdifferentials play the role of generalized gradients in the following sense.

Theorem 2.6 ([9, Exercise 8.8]). Consider a function f : Rn → R and a point
x̄ ∈ Rn. If f can be written as f = g+h, where g is finite at x̄ and h is C1 smooth
on a neighborhood of x̄, then

∂f(x̄) = ∂g(x̄) +∇h(x̄),

∂̂f(x̄) = ∂̂g(x̄) +∇h(x̄).

Theorem 2.7 ([9, Theorems 12.12, 12.17]). Let f : Rn → R be a proper, convex
function. Then on the set where the set-valued mapping (I+∂f)−1 takes nonempty
values, it is single-valued and Lipschitz continuous with constant 1.

Remark 2.8. Theorem 2.7 is a special case of the celebrated theorem of Minty. See
[6] or [9, Section 12.B] for more details.

We now define a large and robust class of functions that includes bothC2 smooth
functions and finite convex functions.

Definition 2.9 ([9, Theorem 10.33]). A function f : O → R, where O is an open set
in Rn, is said to be lower-C2 on O if for each point x̄ ∈ O there is a neighborhood
around x̄ and a scalar ρ such that on this neighborhood f + ρ| · |2 is a finite convex
function.

By Theorem 2.6, the regular and limiting subdifferentials coincide for lower-C2

functions.
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Remark 2.10. To illustrate the abundance of lower-C2 functions, consider the
following example. Given C2 functions fi : O → R on an open set O ⊂ Rn

(i = 1, . . . ,m), the function f = max{f1, . . . , fm} is lower-C2 on O. For more
details see [9, Chapter 10.F].

2.2. Hausdorff measures. For a set U ⊂ Rn, let diam U denote its diameter;
that is,

diam(U) = sup
x,y∈U

|x− y|.

Definition 2.11. Consider a set S ⊂ Rn and real numbers δ, d > 0. We define

λδ
d(S) = inf

{ ∞∑
i=1

diam(Ui)
d : S ⊂

∞⋃
i=1

Ui, diam(Ui) < δ
}
.

Observe that the infimum in the definition above is taken over all countable
covers {Ui} of S such that diam(Ui) < δ for each i.

Definition 2.12. For a set S ⊂ Rn, define the d-dimensional Hausdorff measure
of S to be

λd(S) = lim
δ→0

λδ
d(S).

It can be shown that for each d > 0, the set function λd is an outer measure on
Rn. Furthermore, if d is a positive integer, then on Lebesgue measurable sets in Rd

the d-dimensional Hausdorff measure is a rescaling of the d-dimensional Lebesgue
measure. For more details, see [10]. The following is an easy consequence of the
definition of Hausdorff measure.

Proposition 2.13. Consider a set S ⊂ Rn and let f : S → Rm be a Lipschitz
continuous mapping with Lipschitz constant κ. Then for any real number d > 0,
we have λd(f(S)) ≤ κdλd(S).

Corollary 2.14. Consider a set S ⊂ Rn and let f : S → Rm be a locally Lipschitz
mapping. Then for any real number d > 0, if λd(S) = 0, then λd(f(S)) = 0.

Proof. Around each point x ∈ S, consider a neighborhood in S on which f is
Lipschitz continuous. This collection of neighborhoods forms a cover of S, and
hence there is a countable subcover, say {Vi}. By Proposition 2.13, for each index
i we have λd(f(Vi)) = 0, and hence

λd(f(S)) = λd(

∞⋃
i=1

f(Vi)) ≤ liminf
n→∞

n∑
i=1

λd(Vi) = 0,

as claimed. �

We note that for d = n, Corollary 2.14 appears as Lemma 2.5 in [1].

Definition 2.15. Consider a compact, convex set F ⊂ Rn. The set of maximizers
argmaxx∈F 〈c, x〉 is called the exposed face of the set F corresponding to the vector
c. In particular, the set F is itself an exposed face (corresponding to c = 0). All
other exposed faces are said to be proper.

For a convex set S ⊂ Rn, we will denote its closure, relative interior, and relative
boundary by clS, riS, and rbS, respectively. To prove the main result, we will need
the following two theorems.
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Theorem 2.16 (Larman [5]). Let S ⊂ Rn be a compact convex set. Let N be the
union of the relative boundaries of all the proper exposed faces. Then λn−1(N) = 0.

Theorem 2.17 ([2, Proposition 3]). Suppose zero lies in the interior of the compact
convex set F ⊂ Rn. Then the proper exposed faces of the polar set F ◦ are those
sets of the form

G = {c ∈ NF (x) : 〈c, x〉 = 1},
for points x on the boundary of F. Furthermore, any such exposed face has relative
interior given by

riG = {c ∈ riNF (x) : 〈c, x〉 = 1}.

3. Main result

3.1. Subdifferentials of convex functions. The unit sphere in Rn will be de-
noted by S

n−1, and an open ball of radius r around a point x ∈ Rn will be denoted
by B(x, r).

Lemma 3.1. Let F ⊂ Rn be a convex set. Then

λn−1

(
(
⋃
x∈F

rbNF (x)) ∩ S
n−1

)
= 0.

Proof. Observe that NF (x) = NclF (x) for x ∈ F , so it is sufficient to show that the
statement of the lemma holds for a closed convex set F . First, let us consider the
case when F is a compact convex set. Without loss of generality, we can assume
that zero is in the interior of F , since otherwise we can translate F , so as to have
0 ∈ riF , and then consider Rn as the direct sum of the span of F and its orthogonal
complement. Define

G :=
⋃
x∈F

{c ∈ rbNF (x) : 〈c, x〉 = 1}.

Combining Theorems 2.16 and 2.17 , we deduce λn−1(G) = 0. Observe that G is
contained in Rn \ {0}. Now consider the mapping

f : Rn \ {0} → S
n−1,

x �→ |x|−1x.

The mapping f is locally Lipschitz. Consequently, by Corollary 2.14, we have
λn−1(f(G)) = 0. Observe that the image set f(G) is contained in (

⋃
x∈F rbNF (x))∩

S
n−1, since f simply scales each element of G. Now, to see the reverse inclusion,

consider a vector c ∈ (rbNF (x̄))∩ S
n−1 for some vector x̄ ∈ F . By definition of the

normal cone, we have

〈c, x̄− x〉 ≥ 0, for all x ∈ F.

In particular, since 0 lies in the interior of F , we have 〈c, x̄〉 > 0. So we deduce
ĉ := |〈c, x̄〉|−1c ∈ G and f(ĉ) = c. Thus we have shown

f(G) = (
⋃
x∈F

rbNF (x)) ∩ S
n−1,

and consequently

λn−1

(
(
⋃
x∈F

rbNF (x)) ∩ S
n−1

)
= 0,

as we claimed.
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To get rid of the boundedness assumption on F , we will use a standard limiting
argument. Assume that F is a closed convex set that is not necessarily bounded.
For a positive integer k, let Fk = F ∩B(0, k). Observe

Fk ↑ F,( ⋃
x∈B(0,k)∩F

rbNF (x)
)
↑

( ⋃
x∈F

rbNF (x)
)
.

Thus we have

λn−1

(
(
⋃
x∈F

rbNF (x)) ∩ S
n−1

)
= lim

k→∞
λn−1

(
(

⋃
x∈B(0,k)∩F

rbNF (x)) ∩ S
n−1

)

= lim
k→∞

λn−1

(
(

⋃
x∈B(0,k)∩F

rbNB(0,k)∩F (x)) ∩ S
n−1

)

≤ lim
k→∞

λn−1

(
(

⋃

x∈B(0,k)∩F

rbN
B(0,k)∩F

(x)) ∩ S
n−1

)

= 0,

where the final equality follows since B(0, k) ∩ F is a compact convex set. �

We need the following simple proposition. For future reference, let π : Rn+1 →
Rn be the canonical projection onto the first n coordinates.

Proposition 3.2. Consider a convex function f : Rn → R and a point x ∈ Rn.
Then we have the relation,

v ∈ rb∂f(x) ⇔ (v,−1) ∈ rbNepi f (x, f(x)).

Proof. Let K denote the normal cone, Nepi f (x, f(x)). If ∂f(x) = ∅, then there is
no v ∈ Rn such that (v,−1) ∈ rbK, and hence the result holds trivially. Assume
that ∂f(x) is nonempty. Observe

riK �⊂ {y ∈ Rn+1 : yn+1 ≥ 0},
since otherwise taking closures gives yn+1 ≥ 0 for all y ∈ K, and hence we have
∂f(x) = ∅, which is a contradiction. Thus there exists a point y ∈ riK with
yn+1 < 0. Since K is a cone, we can rescale to get ŷ ∈ riK with ŷn+1 = −1. Hence

riK ∩ {y ∈ Rn+1 : yk+1 = −1} �= ∅.
Using [9, Proposition 2.42], we deduce that

(3.1) ri(K ∩ {y ∈ Rn+1 : yk+1 = −1}) = riK ∩ {y ∈ Rn+1 : yk+1 = −1}.
Finally, we have

ri∂f(x) = π
(
ri(K ∩ {y ∈ Rn+1 : yk+1 = −1})

)
= {v : (v,−1) ∈ riK},

where the last equality follows from (3.1). Taking complements, the result follows.
�

Theorem 3.3. Let f : Rn → R be a convex function. Then the set⋃
x∈Rn

rb∂f(x)

is Lebesgue null.
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Proof. Let

H−1 := {x ∈ Rn+1 : xn+1 = −1},
H< := {x ∈ Rn+1 : xn+1 < 0},

K :=
( ⋃

x∈dom f

rbN epi f (x, f(x))
)
∩ S

n ∩H<.

Applying Lemma 3.1 to epif , we deduce λn(K) = 0. Consider the mapping

φ : H< → H−1, c �→ |cn+1|−1c.

Observe that φ is locally Lipschitz, and therefore by Corollary 2.14, we have
λn(φ(K)) = 0. From Proposition 3.2, we have

π ◦ φ(K) =
⋃

x∈dom f

rb∂f(x).

Since π is Lipschitz as well, we deduce λn(
⋃

x∈Rn rb∂f(x)) = 0. A routine argument
shows that a set has n-dimensional Hausdorff measure zero if and only if it is
Lebesgue null. Hence, the set

⋃
x∈Rn rb∂f(x) is Lebesgue measurable and has

Lebesgue measure zero. �
Definition 3.4. Consider a convex function f : Rn → R. A minimizer x ∈ Rn of
f is said to be nondegenerate if it satisfies the property 0 ∈ ri∂f(x).

Corollary 3.5. Let f : Rn → R be a proper convex function. Consider the collec-
tion of perturbed functions fv(x) = f(x)− 〈v, x〉, indexed by vectors v ∈ Rn. Then
for a full measure set of vectors v ∈ Rn, the function fv has at most one minimizer,
which furthermore is nondegenerate.

Proof. The uniqueness part of the claim is classical, as discussed in the introduction.
Thus it is sufficient to show that for a full measure set of vectors v ∈ Rn, every
critical point of fv is nondegenerate. Indeed, we have 0 ∈ rb∂fv(x) ⇔ v ∈ rb∂f(x).
By Theorem 3.3, the set of vectors v for which v ∈ rb∂f(x) for some x ∈ Rn has
Lebesgue measure zero, and so the result follows. �

We remark that there are proper convex functions f : Rn → R with the property
that for a full measure set of vectors v ∈ Rn, the function fv(x) = f(x)−〈v, x〉 has
no minimizers, a simple example being f = 〈a, x〉 for any vector a ∈ Rn.

3.2. Extension to lower-C2 functions. Having proved Theorem 3.3, we can now
easily extend this theorem to a nonconvex situation. In particular, shortly we will
show that an analogous statement holds for all lower-C2 functions.

Theorem 3.6. Consider a proper function f : Rn → R with the property that for
any point x̄ in its domain, there is a neighborhood V around x̄ such that on V the
function f admits the representation f = g − 1

2ρ| · |2, where g is a convex function
and ρ is a positive real number. Then the set⋃

x∈Rn

rb∂f(x)

is Lebesgue null.

Remark 3.7. In Theorem 3.6, unlike in the definition of lower-C2 functions, the
domain of f is not required to be an open set and the convex function g in the local
representation of f is not required to be finite.
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Proof. For each point x ∈ domf , consider the neighborhood guaranteed to exist
by our assumption on f . This collection of neighborhoods is an open cover of the
domain of f and hence has a countable subcover, say {Vi}. Consider an arbitrary
set Vi from this cover. On Vi, we have f = g − 1

2ρ| · |2, and hence

⋃
x∈Vi

rb∂f(x) =
⋃

x∈Vi∩dom f

rb∂g(x)− ρx(3.2)

=
⋃

x∈Vi∩dom f

rb(∂g(x) + x)− (ρ+ 1)x.

Consider the map

H :
⋃

x∈Vi∩dom f

rb(∂g(x) + x) →
⋃
x∈Vi

rb∂f(x),

c �→ c− (ρ+ 1)(∂g + I)−1(c).

In light of (3.2) and Theorem 2.7, the mapping H is well-defined, surjective, and
Lipschitz continuous. Observe that

λn

( ⋃
x∈Vi∩dom f

rb(∂g(x) + x)
)
= λn

( ⋃
x∈Vi∩dom f

rb∂(g(·) + 1

2
| · |2)(x)

)
= 0,

where the last equality follows from convexity of g+ 1
2 |·|2 and Theorem 3.3. From the

equation above and Corollary 2.14, we deduce λn

( ⋃
x∈Vi

rb∂f(x)
)
= 0. Hence, the

set
⋃

x∈Vi
rb∂f(x) is Lebesgue measurable and has Lebesgue measure zero. Finally,

since {Vi} is a countable cover of domf , it easily follows from a limiting argument
that

⋃
x∈Rn rb∂f(x) is a Lebesgue null set, as was claimed. �

Corollary 3.8. Let f : O → R be a lower-C2 function on an open set O ⊂ Rn.
Then the set ⋃

x∈Rn

rb∂f(x).

is Lebesgue null.

Proof. From Definition 2.9, f satisfies the conditions of Theorem 3.6, and hence
the result follows. �

Definition 3.9. Let f : O → R be a lower-C2 function on an open set O ⊂ Rn.
We say that a point x ∈ Rn is critical for the function f if 0 ∈ ∂f(x), and we call
such a critical point x nondegenerate if the stronger property 0 ∈ ri ∂f(x) holds.

Corollary 3.10. Let f : O → R be a lower-C2 function on an open set O ⊂ Rn.
Consider the collection of perturbed functions fv(x) = f(x) − 〈v, x〉, indexed by
vectors v ∈ Rn. Then for a full measure set of vectors v ∈ Rn, every critical point
of the function fv is nondegenerate.

Proof. We have 0 ∈ rb∂fv(x) ⇔ v ∈ rb∂f(x). By Corollary 3.8, the set of vectors
v for which v ∈ rb∂f(x) for some x ∈ Rn has Lebesgue measure zero, and so the
result follows. �
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4. A conjecture

We can formulate Theorem 3.3 in terms of monotone set-valued mappings. See
[9, Chapter 12] for the definitions. If we restrict our attention in the theorem to
closed proper convex functions f , then Theorem 3.3 is equivalent to the statement
that for a maximal cyclically monotone mapping F : Rn ⇒ Rn, the image of the
set-valued map x �→ rbF (x) has Lebesgue measure zero (see [9, Theorem 12.25]).
We make the following related conjecture.

Conjecture 4.1. Let F : Rn ⇒ Rn be a maximal monotone mapping. Then the
image of the map x �→ rbF (x) has Lebesgue measure zero; that is, the set⋃

x∈Rn

rbF (x)

is Lebesgue null.

A proof of Conjecture 4.1, along with the techniques presented in this paper,
might extend the result of Corollary 3.8 to the class of “prox-regular” functions [8].
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