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LIPSCHITZ BEHAVIOR OF THE ROBUST REGULARIZATION∗
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Abstract. To minimize or upper-bound the value of a function “robustly,” we might instead
minimize or upper-bound the “ε-robust regularization,” defined as the map from a point to the
maximum value of the function within an ε-radius. This regularization may be easy to compute:
convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral
radius of a matrix leads to pseudospectral computations. For favorable classes of functions, we show
that the robust regularization is Lipschitz around any given point, for all small ε > 0, even if the
original function is non-Lipschitz (like the spectral radius). One such favorable class consists of the
semi-algebraic functions. Such functions have graphs that are finite unions of sets defined by finitely
many polynomial inequalities, and are commonly encountered in applications.
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1. Introduction. In the implementation of optimal solutions of an optimiza-
tion model, one is not only concerned with the minimizer of the optimization model,
but also with how numerical errors and perturbations in the problem description and
implementation can affect the solution. Even if an optimal solution is found, imple-
menting the solution precisely in a concrete model may be impossible (the design of
digital filters is a typical example [12]). We might therefore try to solve an optimiza-
tion model in a robust manner. The issues of robust optimization, particularly in the
case of linear and quadratic programming, are documented in [1].

A formal way to address robustness is to consider the “robust regularization” [14].
The notation “⇒” denotes a set-valued map. That is, if F : X ⇒ Y and x ∈ X , then
F (x) is a subset of Y .

Definition 1.1. For ε > 0 and F : X → R
m, where X ⊂ R

n, the set-valued
robust regularization Fε : X ⇒ R

m is defined as

Fε(x) := {F (x+ e) | |e| ≤ ε, x+ e ∈ X} .

For the particular case of a real-valued function f : X → R, we define the robust
regularization f̄ε : X → R of f by

f̄ε(x) := sup {y ∈ fε(x)}
= sup {f(x′) | x′ ∈ X, |x′ − x| ≤ ε} .(1.1)

The operation of transforming a real-valued function into its robust regularization
may be viewed as a kind of “deconvolution”; see [13]. In this paper, we restrict our
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attention to the real-valued robust regularization f̄ε : X → R. The use of set-valued
analysis is restricted to section 4.

The minimizer of the robust regularization better protects against small pertur-
bations and might be a better solution to implement. We illustrate with the example

f(x) =

{ −x if x < 0,√
x if x ≥ 0.

The robust regularization can be quickly calculated to be

f̄ε(x) =

{
ε − x if x < α(ε),√
ε+ x if x ≥ α(ε),

where α(ε) = 1+2ε−√
1+8ε

2 > −ε. The minimizer of f is α(0), and f is not Lipschitz

there. To see this, observe that f(δ)−f(0)
δ−0 → ∞ as δ → 0. But the robust regularization

f̄ε is Lipschitz at its minimizer α(ε); its left and right derivatives there are −1 and
1

2
√

ε+α(ε)
, which are both finite.

The sensitivity of f at 0 can be attributed to the lack of Lipschitz continuity
there. Lipschitz continuity is important in variational analysis and is well studied
in the books [21, 19]. The existence of a finite Lipschitz constant on f close to the
optimizer can be important in the problems from which the optimization problem was
derived.

There are two main aims in this paper. The first is to show that robust regular-
ization has a regularizing property: Even if the original function f is not Lipschitz at
a point x, the robust regularization can be Lipschitz there under various conditions.
For example, in Corollary 4.6, we prove that if the set of points at which f is not
Lipschitz is isolated, then the robust regularization f̄ε is Lipschitz at these points
for all small ε > 0. The second aim is to highlight the relationship between calm-
ness and Lipschitz continuity, a topic important in the study of metric regularity and
subregularity (see, for example, [11]) and studied in some generality for set-valued
mappings (for example, in [16, Theorem 2.1], [20, Theorem 1.5]) but less exploited
for single-valued mappings.

In Theorem 5.3, we prove that if f : Rn → R is semi-algebraic and continuous,
then given any point in R

n, the robust regularization f̄ε is Lipschitz there for all small
ε > 0. Semi-algebraic functions are functions whose graph can be defined by a finite
union of sets defined by finitely many polynomial equalities and inequalities, and they
make up a broad class of functions in applications. (For example, piecewise polynomial
functions, rational functions, and the mapping from a matrix to its eigenvalues are
all semi-algebraic functions.) Moreover, the Lipschitz modulus of f̄ε at x̄ is of order
o
(
1
ε

)
. This estimate of the Lipschitz modulus can be helpful for robust design.
Several interesting examples of robust regularization are tractable to compute

and optimize. For example, the robust regularization of any strictly convex quadratic
is a semidefinite-representable function, tractable via semidefinite programming; see
section 6. The robust regularizations of the spectral abscissa and spectral radius of
a nonsymmetric square matrix, which are the largest real part and the largest norm,
respectively, of the eigenvalues of a matrix, are two more interesting examples. The
robust regularizations of the spectral abscissa and spectral radius are also known as the
pseudospectral abscissa and the pseudospectral radius. The pseudospectral abscissa is
important in the study of the system d

dtu(t) = Au(t) and is easily calculated using the
algorithm in [4, 5], while the pseudospectral radius is important in the study of the
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3082 ADRIAN S. LEWIS AND C. H. JEFFREY PANG

system ut+1 = Aut and is easily calculated using the algorithm in [17]. We refer the
reader to [24] for more details on the importance of the pseudospectral abscissa and
radius in applications. The spectral abscissa is non-Lipschitz whenever the eigenvalue
with the largest real part has a nontrivial Jordan block. But for a fixed matrix, the
pseudospectral abscissa is Lipschitz there for all ε ∈ (0, ε̄) if ε̄ > 0 is small enough
[15]. We rederive this result here, using a much more general approach.

2. Calmness as an extension to Lipschitzness. We begin by discussing the
relation between calmness and Lipschitz continuity, which will be important in the
proofs in section 5 later. Throughout the paper, we will limit ourselves to the single-
valued case. For more on these topics and their set-valued extensions, we refer the
reader to [21].

Definition 2.1. Let F : X → R
m be a single-valued map, where X ⊂ R

n.

(a) [21, section 8F]. Define the calmness modulus of F at x̄ with respect to X to
be

clmF (x̄) := inf{κ | There is a neighborhood V of x̄ such that

|F (x)− F (x̄)| ≤ κ |x− x̄| for all x ∈ V ∩X}
= lim sup

x−→
X

x̄

|F (x)− F (x̄)|
|x− x̄| .

Here, x −→
X

x̄ means that x ∈ X and x → x̄. The function F is calm at x̄ with

respect to X if clmF (x̄) < ∞.

(b) [21, Definition 9.1]. Define the Lipschitz modulus of F at x̄ with respect to
X to be

lipF (x̄) := inf{κ | There is a neighborhood V of x̄ such that

|F (x) − F (x′)| ≤ κ |x− x′| for all x, x′ ∈ V ∩X}
= lim sup

x,x′−→
X

x̄

x �=x′

|F (x)− F (x′)|
|x− x′| .

The function F is Lipschitz at x̄ with respect to X if lipF (x̄) < ∞.

The definitions differ slightly from that of [21]. As can be seen in the definitions,
Lipschitz continuity is a more stringent form of continuity than calmness. In fact,
they are related in the following manner.

Proposition 2.2. Suppose that F : X → R
m, where X ⊂ R

n.

(a) lim supx−→
X

x̄ clmF (x) ≤ lipF (x̄).

(b) If there is an open set U containing x̄ such that U ∩ X is convex, then
lipF (x̄) = lim supx−→

X
x̄ clmF (x).

Proof. To simplify notation, let κ := lim supx−→
X

x̄ clmF (x).

(a) For any ε > 0, we can find a point xε such that |x̄− xε| < ε and clmF (xε) >
κ − ε. Then we can find a point x̃ε such that |xε − x̃ε| < ε and |F (xε)− F (x̃ε)| >
(κ− ε) |xε − x̃ε|. As ε can be made arbitrarily small, we have κ ≤ lipF (x̄) as needed.

(b) For every ε > 0, there is some neighborhood of x̄, say Bδ(x̄), such that

clmF (x) ≤ κ+ ε if x ∈ Bδ(x̄) ∩X.
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For any y, z ∈ Bδ(x̄)∩X , consider the line segment joining y and z, which we denote
by [y, z]. As clmF (x̃) ≤ κ+ ε for all x̃ ∈ [y, z], there is a neighborhood around x̃, say
Vx̃, such that Vx̃∩X is convex and |F (x̂)− F (x̃)| ≤ (κ+2ε) |x̂− x̃| for all x̂ ∈ Vx̃∩X .

As [y, z] is compact, choose finitely many x̃ such that the union of Vx̃ covers [y, z].
We can add y and z into our choice of points and rename them as x̃1, . . . , x̃k in their
order on the line segment [y, z], with x̃1 = y and x̃k = z. Also, we can find a point
x̂i between x̃i and x̃i+1 such that x̂i ∈ Vx̃i ∩ Vx̃i+1 . Therefore, we add these x̂i into
x̃1, . . . , x̃k and get a new set x1, . . . , xK , again in their order on the line segment and
x1 = y, xK = z.

We have

|F (y)− F (z)| ≤
K−1∑
i=1

|F (xi)− F (xi+1)|

≤
K−1∑
i=1

(κ+ 2ε) |xi − xi+1|

≤ (κ+ 2ε) |y − z| ,
and as ε is arbitrary, lipF (x̄) ≤ κ as claimed.

Convexity is a strong assumption here, but some analogous condition is needed,
as the following examples show.

Example 2.3. (a) Consider the set X ⊂ R defined by

X =

( ∞⋃
i=1

[
1

3i
,
2

3i

])
∪ {0} ,

and define the function F : X → R by

F (x) =

{
1
3i if 1

3i ≤ x ≤ 2
3i ,

0 if x = 0.

It is clear that clmF (x) = 0 for all x ∈ X\ {0} since F is constant on each component
of X , and clmF (0) = 1. But

lipF (0) = lim
i→∞

F
(

1
3i

)− F
(

2
3i+1

)
1
3i − 2

3i+1

= lim
i→∞

1
3i − 1

3i+1

1
3i − 2

3i+1

= 2.

Thus, lim supx→0 clmF (x) < lipF (0).
(b) Consider X ⊂ R

2 defined by X :=
{
(x1, x2) | x2

2 = x4
1

}
and the function F :

R
2 → R defined by F (x1, x2) = x2. One can easily check that lim supx→0 clmF (x) = 0

and lipF (0, 0) = 1. This is an example of a semi-algebraic function where inequality
holds.

Note that clmF (x̄) can be strictly smaller than lipF (x̄) even if X is convex, as
demonstrated below.

Example 2.4. (a) Consider F : R → R defined by

F (x) =

{
0 if x = 0,
x2 sin

(
1
x2

)
otherwise.
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Here, clmF (0) = 0, but lipF (0) = ∞.
(b) Consider F : R2 → R defined by

F (x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x1 ≤ 0,
x1 if 0 ≤ x1 ≤ x2/2,
−x1 if 0 ≤ x1 ≤ −x2/2,
2x2 if x1 ≥ |x2| /2.

We can calculate clmF (0, 0) = 2/
√
5, and lipF (0, 0) = 2, so this gives clmF (0, 0) <

lipF (0, 0). This is an example of a semi-algebraic function where inequality holds.
At this point, we make a remark about subdifferentially regular functions. We

recall the definition of subdifferential regularity.
Definition 2.5 ([21, Definition 8.3]). Consider a function f : Rn → R ∪ {∞}

and a point x̄ with f(x̄) finite. For a vector v ∈ R
n, one says that

(a) v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o (|x− x̄|) .

(b) v is a (general) subgradient of f at x̄, written v ∈ ∂f(x̄), if there are sequences

xν → x̄ and vν ∈ ∂̂f(xν) with vν → v and f(xν) → f(x̄).

(c) If f is Lipschitz continuous at x̄, then f is subdifferentially regular if ∂̂f(x̄) =
∂f(x̄).

Though the definition of subdifferential regularity differs from that given in [21,
Definition 7.25], it can be deduced from [21, Corollary 8.11, Theorem 9.13, and Theo-
rem 8.6] when f is Lipschitz, and is simple enough for our purposes. Subdifferentially
regular functions are important and well studied in variational analysis. The class of
subdifferentially regular functions is closed under sums and pointwise maxima, and
includes smooth functions and convex functions. It turns out that the calmness and
Lipschitz moduli are equal for subdifferentially regular functions.

Proposition 2.6. If f : R
n → R ∪ {∞} is Lipschitz continuous at x̄ and

subdifferentially regular there, then clm f(x̄) = lip f(x̄).
Proof. By [21, Theorem 9.13], lip f(x̄) = max {|v| | v ∈ ∂f(x̄)}. If v ∈ ∂f(x̄),

then v ∈ ∂̂f(x̄), and we observe that clm f(x̄) ≥ |v| because

f(x̄+ tv) ≥ f(x̄) + 〈v, tv〉+ o (|t|)
= f(x̄) + |v| |tv|+ o (|t|) .

Therefore clm f(x̄) ≤ lip f(x̄) = max {|v| | v ∈ ∂f(x̄)} ≤ clm f(x̄), which implies that
all three terms are equal.

3. Calmness and robust regularization. Recall the definition of the robust
regularization in Definition 1.1. To study the robust regularization, it is useful to
study the dependence of f̄ε(x) on ε instead of on x. For a point x ∈ X , define
gx : R+ → R by

gx(ε) = f̄ε(x).

To simplify notation, we write g ≡ gx if it is clear from the context. Here are a few
basic properties of gx.

Proposition 3.1. For f : X → R and gx as defined above, we have the following:
(a) gx is monotonically nondecreasing.
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(b) If f is continuous in a neighborhood of x, then gx is continuous in a neigh-
borhood of 0.

Proof. Part (a) is obvious. For part (b), we could use elementary methods in
analysis, or we could observe that gx is the maximal element in the set f(Bε(x)). The
continuity of the composition of the set-valued maps ε �→ Bε(x) �→ f(Bε(x)) by [21,
Proposition 5.52(c)] gives us what we need.

It turns out that calmness of the robust regularization is related to the derivative
of gx.

Proposition 3.2. If f : X → R and ε > 0, then clm f̄ε(x) ≤ clm gx(ε). If in
addition X contains Bε′(x) for some ε′ > ε and gx is differentiable at ε, then

clm f̄ε(x) = clm gx(ε) = g′x(ε).

Proof. For the first part, we proceed to show that if κ > clm gx(ε), then κ ≥
clm f̄ε(x). If |x̃− x| < ε, we have

Bε−|x̃−x|(x) ⊂ Bε(x̃) ⊂ Bε+|x̃−x|(x),

which implies

f̄ε−|x̃−x|(x) ≤ f̄ε(x̃) ≤ f̄ε+|x̃−x|(x).

Then note that if x̃ is close enough to x, we have

f̄ε(x̃) ≤ f̄ε+|x̃−x|(x) = gx(ε+ |x̃− x|) ≤ gx(ε) + κ |x̃− x| ,
and similarly

f̄ε(x̃) ≥ f̄ε−|x̃−x|(x) = gx(ε − |x̃− x|) ≥ gx(ε)− κ |x̃− x| ,
which tells us that

∣∣f̄ε(x̃)− f̄ε(x)
∣∣ ≤ κ |x̃− x|, which is what we need.

For the second part, it is clear that g′x(ε) = clm gx(ε) from the definition of the
derivative. We prove that if κ < g′x(ε), then κ ≤ clm f̄ε(x). By the differentiability of
gx, there is some δ̄ > 0 such that for any 0 ≤ δ ≤ δ̄, we have

f̄ε+δ(x) = gx(ε+ δ)

> gx(ε) + κδ

= f̄ε(x) + κδ.

For any 0 ≤ δ ≤ δ̄, there is some x̃δ ∈ Bε+δ(x) such that f(x̃δ) = f̄ε+δ(x). Let
x̂δ = δ

|x̃δ−x|(x̃δ − x) + x. We have f̄ε(x̂δ) = f̄ε+δ(x), which gives f̄ε(x̂δ)− f̄ε(x) > κδ.

Since x̂δ was chosen such that δ = |x̂δ − x|, we have f̄ε(x̂δ)− f̄ε(x) > κ |x̂δ − x|, which
implies κ ≤ clm f̄ε(x) as needed.

Remark 3.3. A similar statement can be made for ε = 0, except that we change
calmness to “calm from above” as defined in [21, section 8F] in both parts.

We have the following corollary. The subdifferential “∂” was defined in Definition
2.5.

Corollary 3.4. If f : Rn → R, ε > 0, and gx is Lipschitz at ε, then

clm f̄ε (x) ≤ lip gx(ε) = sup {|y| | y ∈ ∂gx(ε)} .
Proof. It is clear that clm f̄ε(x) ≤ clm gx(ε) ≤ lip gx(ε). The formula lip gx(ε)=

sup{|y| | y ∈ ∂gx(ε)} follows from [21, Theorem 9.13, Definition 9.1].
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In general, the robust regularization is calm.
Proposition 3.5. For a continuous function f : X → R, there is an ε̄ > 0 such

that f̄ε is calm at x for all 0 < ε ≤ ε̄ except on a subset of (0, ε̄] of measure zero.
Proof. By Proposition 3.1(b), since f is continuous at x, gx is continuous in

[0, ε̄] for some ε̄ > 0. Since gx is monotonically nondecreasing, it is differentiable in
all [0, ε̄] except for a set of measure zero. The derivative g′x(ε) equals calm f̄ε(x) by
Proposition 3.2.

Remark 3.6. In general, the above result cannot be improved. For an example,
let c : [0, 1] → [0, 1] denote the Cantor function, commonly used in real analysis texts
as an example of a function that is not absolutely continuous and not satisfying the
fundamental theorem of calculus. Then clm c̄ε(0) = ∞ for all ε lying in the Cantor
set.

4. Robust regularization in general. In this section, in Corollary 4.6, we
prove that if lip f(x) < ∞ for x close to but not equal to x̄, then lip f̄ε(x̄) < ∞ for all
small ε > 0, even when lip f(x̄) = ∞. To present the details of the proof, we need a
short foray into set-valued analysis.

Definition 4.1 (see [21, Example 4.13]). For two sets C,D ⊂ R
m, the Pompieu–

Hausdorff distance between C and D, denoted by d(C,D), is defined by

d(C,D) := inf {η ≥ 0 | C ⊂ D + ηB, D ⊂ C + ηB} .

Definition 4.2 (see [21, Definitions 9.26, 9.28]). A mapping S : X ⇒ R
m is

Lipschitz continuous on its domain X ⊂ R
n, if it is nonempty-closed-valued on X

and there exists κ ≥ 0, a Lipschitz constant, such that

d(S(x′), S(x)) ≤ κ |x′ − x| for all x, x′ ∈ X,

or equivalently, S(x′) ⊂ S(x) + κ |x′ − x|B for all x, x′ ∈ X. The Lipschitz modulus
is defined as

lipS(x̄) := lim sup
x,x′−→

X
x̄

x �=x′

d(S(x′), S(x))
|x′ − x|

and is the infimum of all κ such that there exists a neighborhood U of x̄ such that S
is Lipschitz continuous with constant κ in U ∩X.

For F : X → R
m, we may write the robust regularization Fε : X ⇒ R

m as
Fε = F ◦ Φε, where Φε : X ⇒ X is defined by Φε(x) = Bε(x) ∩ X . For reasons that
will be clear later in section 7, we consider the extension Φ̃ε : Rn ⇒ X defined by
Φ̃ε (x) = Bε(x) ∩ X . It is clear that Φ̃ε |X= Φε using our previous notation, and it
follows straight from the definitions that lipΦε (x) ≤ lip Φ̃ε (x) for x ∈ X .

Definition 4.3. We say that X ⊂ R
n is peaceful at x̄ ∈ X if lipΦε(x̄) is finite

for all small ε > 0. If in addition lim supε↓0 lip Φ̃ε(x̄) ≤ κ for all small ε > 0, we say
that X is peaceful with modulus κ at x̄, or κ-peaceful at x̄.

When x̄ lies in the interior of X and ε is small enough, then Φ̃ε is Lipschitz
with constant 1. In section 7, we will find weaker conditions on X for the Lipschitz
continuity of Φ̃ε. We will see that convex sets are 1-peaceful, but for now, we remark
that if X is convex, then Φε is globally Lipschitz in X .

Proposition 4.4. If X is a convex set, then Φε(x) ⊂ Φε(x
′) + |x− x′|B for all

x, x′ ∈ X.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ BEHAVIOR OF THE ROBUST REGULARIZATION 3087

Proof. The condition we are required to prove is equivalent to

Bε (x) ∩X ⊂ (Bε(x
′) ∩X) + |x− x′|B for x, x′ ∈ X.

For any point x̃ ∈ Bε (x) ∩ X , the line segment [x′, x̃] lies in X and is of length at
most |x̃− x|+ |x− x′|. The ball Bε(x

′) can contain the line segment [x′, x̃], in which
case x̃ ∈ Bε(x

′)∩X , or the boundary of Bε(x
′) may intersect [x′, x̃] at a point, say x̂.

Since X is a convex set, we have x̂ ∈ Bε(x
′) ∩X . Furthermore

|x̃− x̂| = |x̃− x′| − ε

≤ |x̃− x|+ |x− x′| − ε

≤ |x− x′| ,

so x̃ ∈ (Bε(x
′) ∩X) + |x− x′|B.

We remark that if X is nearly radial at x̄ as introduced in [14], then X is 1-
peaceful; see section 7. The set X is nearly radial at x̄ if

dist(x̄, x+ TX(x)) = o(|x − x̄|) as x → x̄ in X.

The set X is nearly radial if it is nearly radial at all points in X . The notation TX (x)
refers to the (Bouligand) tangent cone (or “contingent cone”) to X at x ∈ X , formally
defined as

TX(x̄) = {lim t−1
r (xr − x̄) : tr ↓ 0, xr → x̄, xr ∈ X}

(see, for example, [21, Definition 6.1]). Many sets are nearly radial, including, for
instance, semi-algebraic sets, amenable sets and smooth manifolds.

We now present a result on the regularizing property of robust regularization.
Proposition 4.5. For F : X → R

m and x̄ ∈ X, suppose that X is peaceful, and
there exists a neighborhood U of x̄, a convex set X̃, and a function F̃ : X̃ → R

m such
that X ∩ U ⊂ X̃ ⊂ R

n, F̃ |X = F , and lip F̃ (x) < ∞. Then lipFε(x̄) is finite for all
small ε > 0.

Proof. First, we prove that lipF : X → R+ is upper semicontinuous. This result
is just a slight modification of the first part of [21, Theorem 9.2], but we include the
proof for completeness. Suppose that xi → x. By the definition of lipF , we can find
xi,1, xi,2 ∈ X such that

|F (xi,1)− F (xi,2)|
|xi,1 − xi,2| > lipF (xi)− |xi − x| ,
and |xi,j − xi| < |xi − x| for j = 1, 2.

Taking limits as i → ∞, we see that xi,1, xi,2 → x, and it follows that

lipF (x) ≥ lim sup
i→∞

|F (xi,1)− F (xi,2)|
|xi,1 − xi,2|

= lim sup
i→∞

lipF (xi).

Thus lipF : X → R+ is upper semicontinuous.
So for ε1 small enough, choose ε2 < ε1 such that lipF is bounded above in

C1 = (Bε1+ε2(x̄)\Bε1−ε2(x̄)) ∩X , say by the constant κ1. Then for any κ2 > κ1 and
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any x ∈ C1, there is an εx such that F is Lipschitz continuous on Bεx(x) ∩ X with
constant κ2 with respect to X . Thus ∪x∈C1{Bεx(x)} is an open cover of C1.

By the Lebesgue number lemma, there is a constant δ such that if x1, x2 lie in C1

and |x1 − x2| ≤ δ, then the line segment [x1, x2] lies in one of the open balls Bεx(x)
for some x ∈ C1. We may assume that δ < ε2.

Also, since X is peaceful at x̄, choose ε1 small enough so that lipΦε1(x̄) is finite,
say lip Φε1(x̄) < K. If X is convex, then this is possible due to Proposition 4.4. We
can assume that K > 2. Therefore, there is an open set V ⊂ U about x̄ such that
Φε1 is Lipschitz in V ∩ X with constant K, that is, Φε1(x) ⊂ Φε1(x

′) + K |x− x′|B
for all x, x′ ∈ V ∩X .

So, for x, x′ ∈ V ∩ B δ
2K

(x̄) ∩X , we want to show that

Fε1(x) ⊂ Fε1(x
′) +Kκ2 |x− x′|B.

Suppose that y ∈ Fε1(x). So y = F (x̃) for some x̃ ∈ Bε1(x) ∩ X . If x̃ ∈ Bε1− δ
2K

(x̄),

then x̃ ∈ Bε1(x
′) ∩X because |x′ − x̄| ≤ δ

2K . So y ∈ Fε1(x
′). Otherwise

x̃ ∈ (Bε1+
δ

2K
(x̄)\Bε1− δ

2K
(x̄)) ∩X.

We have Φε1(x) ⊂ Φε1(x
′) +K |x− x′|B. So there is some x̂ ∈ Φε1(x

′) such that

|x̂− x̃| ≤ K |x− x′| ≤ K
δ

2K
=

δ

2
.

Furthermore,

|x̂− x̄| ≤ |x̃− x|+ |x− x̄|+ |x̂− x̃| ≤ ε1 +
δ

2K
+

δ

2
≤ ε1 +

3δ

4
< ε1 + ε2

and

|x̂− x̄| ≥ |x̃− x| − |x− x̄| − |x̂− x̃| ≥ ε1 − δ

2K
− δ

2
≥ ε1 − 3δ

4
> ε1 − ε2.

Hence x̂ ∈ (Bε1+ε2(x̄)\Bε1−ε2(x̄))∩X . Since |x̂− x̃| < δ, the line segment [x̂, x̃] lies in
Bεx(x) for some x ∈ X . Since the line segment [x̂, x̃] is convex and lip F̃ is bounded
from above by κ2 there, we have

|F (x̃)− F (x̂)| =
∣∣∣F̃ (x̃)− F̃ (x̂)

∣∣∣
< κ2 |x̃− x̂|

by [21, Theorem 9.2]. We note that

F (x̃) ∈ F (x̂) + κ2 |x̂− x̃|B
⊂ Fε1(x

′) + κ2 |x̂− x̃|B
⊂ Fε1(x

′) +Kκ2 |x− x′|B,
and we are done.

We are now ready to relate lip f̄ε(x̄) to lip f(x̄). We remind the reader that in
the proof of Corollary 4.6, fε : X ⇒ R is a set-valued map as introduced in Definition
1.1, which is similar to f̄ε but maps to intervals in R.

Corollary 4.6. For f : X → R, if the conditions in Proposition 4.5 hold (with
F = f), then lip f̄ε(x̄) < ∞ for all small ε > 0.
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Proof. By Proposition 4.5, we have lip fε(x̄) < ∞ with the given conditions. It
remains to prove that lip f̄ε(x̄) ≤ lip fε(x̄). We can do this by proving that lip S̄(x̄) ≤
lipS(x̄), where S : X ⇒ R is a set-valued map, and S̄ : X → R is defined by
S̄(x) = sup{y | y ∈ S(x)}. Note that if S = fε, then S̄ = (fε) = f̄ε.

For any κ > lipS(x), we have d(S(x̃), S(x̂)) ≤ κ |x̃− x̂| for x̃, x̂ ∈ X close enough
to x by [21, Definition 9.26]. The definition of the Pompeiu–Hausdorff distance tells
us that S(x̃) ⊂ S(x̂) + κ |x̃− x̂|, which implies S̄(x̃) ≤ S̄(x̂) + κ |x̃− x̂|. By reversing
the roles of x̃ and x̂, we obtain

∣∣S̄(x̃)− S̄(x̂)
∣∣ ≤ κ |x̃− x̂|. So κ > lip S̄(x), and since

κ is arbitrary, we have lip S̄(x) ≤ lipS(x) as needed.
The robust regularization is sometimes defined for extended value functions in

the following manner. For an extended value function f : Rn → (−∞,∞], the robust
regularization of f can be defined by

x �→ sup{f(x′) | |x′ − x| ≤ ε}.

This definition differs from (1.1) at points x where Bε(x) �⊂ dom f , where dom f is
the set of points where f is finite. In this case, at any point outside the interior of
dom f , the robust regularization is infinity. On the other hand, around any point
in the interior of the domain, for sufficiently small ε we can apply our results to the
restriction of f to a small neighborhood of the point.

We now end with a remark on an alternative definition of the robust regulariza-
tion.

Remark 4.7. Yet another alternative definition of the robust regularization is as
follows: For F : X → R

m, define F̃ε : R
n ⇒ R

m by F̃ε = F ◦ Φ̃ε, where Φ̃ε : R
n ⇒ X

is defined by Φ̃ε (x) = Bε(x) ∩ X . Correspondingly, the definition of peacefulness
in Definition 4.3 can be amended to say that lip Φ̃ε(x̄) is finite for all small ε > 0.
With this new definition of peacefulness, the conclusion of Proposition 4.5 can be
strengthened to say that lip F̃ε(x̄) is finite for all small ε > 0. Also, we can amend the
conclusion in Corollary 4.6 to lip f̃ε(x̄) < ∞ for all small ε > 0, where f̃ε : X+εB → R

m

is defined by f̃ε(x) = maxx′∈X∩Bε(x̄) f(x
′). The proof of Proposition 4.5 involves

substitution of occurrences of Φε with Φ̃ε and other minor changes.

5. Semi-algebraic robust regularization. In this section, in Theorem 5.3, we
prove that if f : Rn → R is continuous and semi-algebraic, then at any given point,
the robust regularization is locally Lipschitz there for all sufficiently small ε > 0.
This theorem is more appealing than Corollary 4.6 because the required condition is
weaker. The condition lip f (x) < ∞ for all x close to but not equal to x̄ in Corollary
4.6 is a strong condition because if a function is not Lipschitz at a point x̄, it is likely
that it is not Lipschitz at some points close to x̄ as well. For example, in f : R2 → R

defined by f(x1, x2) =
∣∣√x1

∣∣, f is not Lipschitz at all points where x1 = 0.
We proceed to prove the main theorem of this section in the steps outlined below.
Proposition 5.1. For f : X → R, where X ⊂ R

n is convex, define G : X×R+ →
R+ ∪ {∞} by

G(x, ε) := lim sup
ε̃→ε

lip f̄ε̃(x).

If f is semi-algebraic, then the maps (x, ε) �→ clm f̄ε(x), (x, ε) �→ lip f̄ε(x), and G are
semi-algebraic.

Proof. The semi-algebraic nature is a consequence of the Tarski–Seidenberg quan-
tifier elimination.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3090 ADRIAN S. LEWIS AND C. H. JEFFREY PANG

The semi-algebraicity of (x, ε) �→ clm f̄ε(x) gives us an indication of how the map
ε �→ clm f̄ε(x) behaves asymptotically.

Proposition 5.2. Suppose that f : X → R is continuous and semi-algebraic,
where X ⊂ R

n. Fix x ∈ X. Then clm f̄ε(x) = o
(
1
ε

)
as ε ↘ 0. Hence f̄ε is calm at x

for all small ε > 0.
Proof. The map gx is semi-algebraic because it can be written as a composition

of semi-algebraic maps ε �→ (x, ε) �→ f̄ε(x). Thus gx is differentiable on some open
interval of the form (0, ε̄) for ε̄ > 0. Recall that clm gx(ε) = g′x(ε) by Proposition 3.2.

We show that for any K > 0, we can reduce ε̄ if necessary so that the map
ε �→ clm f̄ε(x) is bounded from above by ε �→ K

ε on ε ∈ [0, ε̄]. By the monotonicity
theorem [8, Theorem 2.1], for any K > 0, there exists an ε̄ > 0 such that either
g′x(ε) ≤ K

ε for all 0 < ε < ε̄, or g′x(ε) ≥ K
ε for all 0 < ε < ε̄. The latter cannot happen;

otherwise for any 0 < ε < ε̄,

f̄ε(x)− f(x) =

∫ ε

0

g′x(s)ds

≥
∫ ε

0

K

s
ds = ∞.

This contradicts the continuity of gx. If ε is small enough, the derivatives of gx exist
for all small ε > 0 and g′x(ε) = clm f̄ε(x) by Proposition 3.2. This gives us the required
result.

Consider f : [0, 1] → R defined by f(x) = x1/k. Then g0(ε) = ε1/k, so clm f̄ε(0) =
g′0(ε) =

1
k ε

(1/k)−1. As k → ∞, we see that the bound above is tight.
We are now ready to state the main theorem of this paper. In the particular case

of X = R
n, we have the following theorem.

Theorem 5.3. Consider any continuous semi-algebraic function f : Rn → R. At
any fixed point x̄ ∈ R

n, the robust regularization f̄ε is Lipschitz at x̄, and its calmness
and Lipschitz moduli, clm f̄ε(x̄) and lip f̄ε(x̄), agree for all sufficiently small ε and
behave like o

(
1
ε

)
as ε ↓ 0.

Proof. In view of Proposition 5.2, we need only prove that there is some ε̄ > 0
such that lip f̄ε(x̄) = clm f̄ε(x̄) for all ε ∈ (0, ε̄]. We can assume that gx̄ is twice
continuously differentiable in (0, ε̄]. The graph of G : Rn × R+ → R+ as defined in
Proposition 5.1 is semi-algebraic, so by the decomposition theorem [8, Theorem 6.7],
there is a finite partition of semi-algebraic C2 manifolds C1, . . . , Cl such that G |Ci is
C2.

If the segment {x̄} × (0, ε̄] lies in a semi-algebraic manifold Ci of full dimension,
then

lip f̄ε(x̄) = lim sup
x̃→x̄

clm f̄ε(x̃) (by Proposition 2.2)

= lim sup
x̃→x̄

g′x̃(ε) (by Proposition 3.2)

= g′x̄(ε)
= clm f̄ε(x̄),

and we have nothing to do. Therefore, assume that the segment is on the boundary
of a manifold Ci of full dimension.

Since G is semi-algebraic, the map ε �→ lim supα→ε lip f̄α(x̄) is semi-algebraic, so
we can reduce ε̄ > 0 as necessary such that one of the following holds:

(1) lim supα→ε lip f̄α(x̄) < clm f̄ε(x̄) for all ε ∈ (0, ε̄];
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(2) lim supα→ε lip f̄α(x̄) = clm f̄ε(x̄) for all ε ∈ (0, ε̄];
(3) lim supα→ε lip f̄α(x̄) > clm f̄ε(x̄) for all ε ∈ (0, ε̄].
Case (1) cannot hold because lip f̄ε(x̄) ≥ clm f̄ε(x̄). Case (2) is what we seek to

prove, so we proceed to show that case (3) cannot happen by contradiction.
We can choose ε̃,M1,M2 > 0 such that 0 < ε̃ < ε̄ and

clm f̄ε(x̄) < M2 < M1 < lim sup
α→ε

lip f̄α(x̄) for all ε ∈ [ε̃, ε̄].

We state and prove a lemma important to the rest of the proof before continuing.
Lemma 5.4. There exists an interval (ε1, ε2) contained in (ε̃, ε̄] and a manifold

T1 ⊂ R
n × R+ such that all of the following hold:

(1) {x̄} × (ε1, ε2) ⊂ cl (T1);
(2) T1 is an open C2 manifold of full dimension;
(3) H : Rn × R+ → R, defined by H(x, ε) = f̄ε(x), is C2 in T1;
(4) for all (x, ε) ∈ T1, we have M1 ≤ g′x(ε) < ∞;
(5) (x, ε) �→ g′x(ε) is continuous in T1.
Proof. Consider the set

T := {(x, ε) | M1 ≤ g′x(ε) < ∞} .

First, we prove that {x̄} × [ε̃, ε̄] ⊂ cl T . It suffices to show that for all ε ∈ (ε̃, ε̄],
(x̄, ε) ∈ cl T . This can in turn be proved by showing that for all δ > 0, we can
find x′, ε′ such that |x̄− x′| < δ, |ε− ε′| < δ such that (x′, ε′) ∈ T , or equivalently,
M1 ≤ g′x′(ε′) < ∞.

Since lim supα→ε lip f̄α(x̄) > M1, there exists some ε◦ such that |ε◦ − ε| < δ
2 and

lip f̄ε◦(x̄) > M1.
Next, since

lim sup
x→x̄

|∂gx(ε◦)| ≥ lim sup
x→x̄

clm f̄ε◦(x) = lip f̄ε◦(x̄),

there is some x′ such that |x̄− x′| < δ and |∂gx′(ε◦)| > 1
2 lip f̄ε◦(x̄) +

1
2M1.

Finally, since gx′(·) is semi-algebraic, we can find some ε′ such that |ε′ − ε◦| < δ
2 ,

g′x′(ε′) is well defined and finite, and

g′x′(ε′) > |∂gx′(ε◦)| − 1

2
(lip f̄ε◦ (x̄)−M1) > M1.

These choices of x′ and ε′ are easily verified to satisfy the requirements stated.
By the decomposition theorem [8, Theorem 6.7], T can be decomposed into a

finite disjoint union of C2 smooth manifolds T1, T2, . . . , Tp on which H is C2. Since
{x̄} × [ε̃, ε̄] ⊂ cl T , there must be some Ti of full dimension and (ε1, ε2) such that
{x̄} × (ε1, ε2) ⊂ cl Ti. Without loss of generality, let one such Ti be T1.

Conditions (1), (2), (3), and (4) are automatically satisfied. Note that g′x(ε) is
exactly the derivative of H(·, ·) with respect to the second coordinate, and so Property
(5) is satisfied. This concludes the proof of the lemma.

We now continue with the rest of the proof of the theorem. Note that the manifold
T1 is of dimension at least 2.

Using Lemma 5.7, which we will prove later, we can construct the map ϕ : [0, 1)×
(ε̂1, ε̂2) → clT1, such that its derivative with respect to the second variable exists and
is continuous, and ϕ(0, ε) = (x̄, ε) for all ε ∈ (ε̂1, ε̂2).
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For each 0 < δ < 1, consider the path x̃δ : [ε̂1, ε̂2] → R
n defined by x̃δ(ε) := ϕ(δ, ε).

We have

f̄ε̂2 (x̃δ(ε̂2))− f̄ε̂1(x̃δ(ε̂1))

=

∫ ε̂2

ε̂1

∇H(x̃δ(s), s) · (x̃′
δ(s), 1)ds

=

∫ ε̂2

ε̂1

∇xH(x̃δ(s), s) · x̃′
δ(s)ds+

∫ ε̂2

ε̂1

∇sH(x̃δ(s), s)ds,

where H(x, ε) = f̄ε(x). The second component of ∇H(x̃δ(s), s) is simply g′x̃δ(s)
(s).

The first component can be analyzed as follows:

∇xH(x̃δ(s), s) · x̃′
δ(s)

= lim
t→0

1

t
(H(x̃δ(s) + tx̃′

δ(s), s)−H(x̃δ(s), s))

= lim
t→0

1

t
(f̄s(x̃δ(s) + tx̃′

δ(s))− f̄s(x̃δ(s))).

Provided that t |x̃′
δ(s)| < s, Bs−t|x̃′

δ(s)|(x̃δ(s)) ⊂ Bs(x̃δ(s) + tx̃′
δ(s)), and so

∇xH(x̃δ(s), s) · x̃′
δ(s)

≥ lim
t→0

1

t
(f̄s−t|x̃′

δ(s)|(x̃δ(s))− f̄s(x̃δ(s)))

= |x̃′
δ(s)| lim

t→0

1

t |x̃′
δ(s)|

(
f̄s−t|x̃′

δ
(s)|(x̃δ(s))− f̄s(x̃δ(s))

)
= − |x̃′

δ(s)| g′x̃δ(s)
(s).

Hence,

f̄ε̂2 (x̃δ(ε̂2))− f̄ε̂1(x̃δ(ε̂1))

=

∫ ε̂2

ε̂1

∇xH(x̃δ(s), s) · x̃′
δ(s)ds+

∫ ε̂2

ε̂1

∇sH(x̃δ(s), s)ds

≥
∫ ε̂2

ε̂1

(1− |x̃′
δ(s)|)g′x̃δ(s)

(s)ds.

Since the derivatives of ϕ are continuous, x̃′
δ(s) → x̃′

0(s) = 0 as δ → 0 for ε̂1 < s < ε̂2.
In fact, the term |x̃′

δ(s)| converges to zero uniformly in [ε̂1, ε̂2]. To see this, recall that
x̃′
δ(s) is a partial derivative of ϕ. Since ϕ is C1, x̃′

δ(s) is continuous with respect to s
and δ. For any β > 0 and s ∈ [ε̂1, ε̂2], there exists γs such that

|x̃′
δ(s̃)| < β if δ < γs and |s̃− s| < γs.

The existence of γ such that

|x̃′
δ(s)| < β if δ < γ and s ∈ [ε̂1, ε̂2]

follows by the compactness of [ε̂1, ε̂2]. So we may choose δ small enough so that

(1− |x̃′
δ(s)|) >

M1 +M2

2M1
for all s ∈ [ε̂1, ε̂2].
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Now, for δ small enough and i = 1, 2, we have g′x̄(ε̂i) < M2, so by Proposition
3.2, this gives us clm f̄ε̂i(x̄) = g ′̄x(ε̂i) < M2. Therefore, if δ is small enough,∣∣f̄ε̂i(x̃δ(ε̂i))− f̄ε̂i(x̄)

∣∣ ≤ M2 |x̃δ(ε̂i)− x̄| .

Recall that if the derivative g ′̄x(ε) exists, then g ′̄x(ε) = clm f̄ε(x̄) by Proposition
3.2. On the one hand, we have

f̄ε̂2(x̄)− f̄ε̂1(x̄) =

∫ ε̂2

ε̂1

g′x̄(s)ds ≤
∫ ε̂2

ε̂1

M2ds = M2(ε̂2 − ε̂1).

But on the other hand, x̃δ(s) ∈ T1 for 0 < δ < 1, and so g′x̃δ(s)
(s) ≥ M1 by Lemma

5.4. If δ is small enough, we have∣∣ f̄ε̂2(x̄)− f̄ε̂1(x̄)
∣∣

≥ ∣∣f̄ε̂2(x̃δ(ε̂2))− f̄ε̂1(x̃δ(ε̂1))
∣∣− (∣∣f̄ε̂2(x̃δ(ε̂2))− f̄ε̂2(x̄)

∣∣+ ∣∣f̄ε̂1(x̃δ(ε̂1))− f̄ε̂1(x̄)
∣∣)

≥
∫ ε̂2

ε̂1

(1− |x̃′
δ(s)|)g′x̃δ(s)

(s)ds−M2 (|x̃δ(ε̂2)− x̄|+ |x̃δ(ε̂1)− x̄|)

≥
∫ ε̂2

ε̂1

(1− |x̃′
δ(s)|)M1ds−M2(|x̃δ(ε̂2)− x̄|+ |x̃δ(ε̂1)− x̄|)

≥
∫ ε̂2

ε̂1

(
M1 +M2

2

)
ds−M2(|x̃δ(ε̂2)− x̄|+ |x̃δ(ε̂1)− x̄|)

=

(
M1 +M2

2

)
(ε̂2 − ε̂1)−M2(|x̃δ(ε̂2)− x̄|+ |x̃δ(ε̂1)− x̄|).

As δ is arbitrarily small and the terms |x̃δ(ε̂i)− x̄| → 0 as δ → 0 for i = 1, 2, we
have

∣∣f̄ε̂2(x̄)− f̄ε̂1(x̄)
∣∣ ≥ (

M1+M2

2

)
(ε̂2 − ε̂1). This is a contradiction, and thus we are

done.
Before we prove Lemma 5.7, we need to recall the definition of simplicial complexes

from [9, section 3.2.1]. A simplex with vertices a0, . . . , ad is

[a0, . . . , ad] =

{
x ∈ R

n | ∃λ0, . . . , λd ∈ [0, 1],

d∑
i=0

λi = 1, and x =

d∑
i=0

λiai

}
.

The corresponding open simplex is

(a0, . . . , ad) =

{
x ∈ R

n | ∃λ0, . . . , λd ∈ (0, 1),
d∑

i=0

λi = 1, and x =
d∑

i=0

λiai

}
.

We shall denote by int(σ) the open simplex corresponding to the simplex σ. A face
of the simplex σ = [a0, . . . , ad] is a simplex τ = [b0, . . . , be] such that

{b0, . . . , be} ⊂ {a0, . . . , ad}.

A finite simplicial complex in R
n is a finite collection K = {σ1, . . . , σp} of sim-

plices σi ⊂ R
n such that, for every σi, σj ∈ K, the intersection σi ∩σj either is empty

or is a common face of σi and σj . We set |K| = ∪σi∈Kσi; this is a semi-algebraic
subset of Rn. We recall a result on relating semi-algebraic sets to simplicial complexes.
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Theorem 5.5 ([9, Theorem 3.12]). Let S ⊂ R
n be a compact semi-algebraic set,

and let S1, . . . , Sp be semi-algebraic subsets of S. Then there exists a finite simplicial
complex K in R

n and a semi-algebraic homeomorphism h : |K| → S, such that each
Sk is the image by h of a union of open simplices of K.

We need yet another result for the proof of Lemma 5.7. In the following, let p̃t
denote the point (0, t) in R

2.

Proposition 5.6. Suppose that φ : (0, 1)2 → R, not necessarily semi-algebraic,
is continuous in (0, 1)2. Let gphφ ⊂ (0, 1)2 × R be the graph of φ. Then for any
t ∈ (0, 1), cl (gph (φ) ∩ {p̃t} ×R) is either a single point or a connected line segment.

Proof. Suppose that (p̃t, a1) and (p̃t, a2) lie in cl(gphφ). We need to show that
for any α ∈ (a1, a2), (p̃t, α) lies in cl(gphφ).

For any ε > 0, we can find points p1, p2 ∈ (0, 1)2 such that the points (p1, ã1),
(p2, ã2) ∈ gphφ are such that |ãi − ai| < ε and |pi − p̃t| < ε for i = 1, 2. Recall that
by definition, ãi = φ(pi) for i = 1, 2. Choose ε such that ã1 + ε < ã2 − ε. By the
intermediate value theorem, for any α ∈ (ã1 + ε, ã2 − ε), there exists a point p in
the line segment [p1, p2] such that φ(p) = α. Moreover, |p− p̃t| < maxi=1,2 |pi − p̃t|.
Letting ε → 0, we see that (p̃t, α) ∈ cl (gphφ) as needed.

We now prove our last result, which is important for the proof of Theorem 5.3.
The proof of the lemma below is similar to the proof of the curve selection lemma in
[9, Theorem 3.13].

Lemma 5.7. Let S ⊂ R
n be a semi-algebraic set, and let τ : [ε1, ε2} → R

n be a
semi-algebraic curve such that τ([ε1, ε2]) ∩ S = ∅ and τ([ε1, ε2]) ⊂ cl (S). Then there
exists a function ϕ : [0, 1]× [ε̂1, ε̂2] → R

n, with [ε̂1, ε̂2] �= ∅ and [ε̂1, ε̂2] ⊂ [ε1, ε2], such
that

(1) ϕ(0, ε) = τ(ε) for ε ∈ [ε̂1, ε̂2] and ϕ((0, 1]× [ε̂1, ε̂2]) ⊂ S;

(2) the partial derivative of ϕ with respect to the second variable, which we denote
by ∂

∂εϕ, exists and is continuous in [0, 1]× [ε̂1, ε̂2].

Proof. Replacing S by its intersection with a closed bounded set containing
τ([ε1, ε2]), we can assume S is bounded. Then cl(S) is a compact semi-algebraic
set. By Theorem 5.5, there is a finite simplicial complex K and a semi-algebraic
homeomorphism h : |K| → cl(S), such that S and τ([ε1, ε2]) are images by h of a
union of open simplices in K. In particular, this means that there is an open interval
(ε̂1, ε̂2) ⊂ [ε1, ε2] such that τ((ε̂1, ε̂2)) is an image by h of a one-dimensional open
simplex in K. Since h−1 ◦ τ((ε̂1, ε̂2)) is in cl(S) but not in S, there is a simplex σ of
K which has h−1 ◦ τ([ε̂1, ε̂2]) lying in the boundary of σ, and h(int(σ)) ⊂ S.

Let σ̂ be the barycenter of σ. Define the map δ : [0, 1]× [ε̂1, ε̂2] → R
n by

δ(t, ε) = (1− t)h−1 ◦ τ(ε) + tσ̂.

The map above satisfies δ((0, 1]×(ε̂1, ε̂2)) ⊂ int(σ). By contracting the interval [ε̂1, ε̂2]
slightly, ϕ = h ◦ δ satisfies property (1).

By contracting the interval [ε̂1, ε̂2] if necessary and applying the decomposition
theorem [8, Theorem 6.7], we can assume that ϕ is C1 in the set (0, t̄] × [ε̂1, ε̂2] for
some t̄ ∈ (0, 1).

Since τ is semi-algebraic, we contract the interval [ε̂1, ε̂2] again if necessary so that
τ is C1 there. Therefore, ∂

∂εϕ exists in [0, t̄]× [ε̂1, ε̂2]. It remains to show that ∂
∂εϕ is

continuous in [0, t̄] × [ε̂1, ε̂2]. We do this by showing that ∂
∂εϕi : [0, t̄] × [ε̂1, ε̂2] → R,

the ith component of the derivative with respect to the second variable, is continuous
for each i.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ BEHAVIOR OF THE ROBUST REGULARIZATION 3095

Since ∂
∂εϕi is continuous in (0, t̄]× [ε̂1, ε̂2], it remains to show that it is continuous

at every point in {0} × [ε̂1, ε̂2]. The graph of ∂
∂εϕi corresponding to the domain

(0, t̄] × [ε̂1, ε̂2], which we denote by gph
(

∂
∂εϕi

)
, is a subset of (0, t̄] × [ε̂1, ε̂2] × R.

We show that ((0, ε), ∂
∂εϕi(0, ε)) ∈ cl

(
gph

(
∂
∂εϕi

))
. For small t1, t2 > 0, consider

ϕi(t1, ε − t2) and ϕi(t1, ε + t2). By the intermediate value theorem, there is some
ε̃ ∈ (ε − t2, ε+ t2) such that

∂

∂ε
ϕi(t1, ε̃) =

1

2t2
(ϕi(t1, ε+ t2)− ϕi(t1, ε− t2)).

If t2 were chosen such that∣∣∣∣ 1

2t2
(ϕi(0, ε+ t2)− ϕi(0, ε− t2))− ∂

∂ε
ϕi(0, ε)

∣∣∣∣
is small, and t1 is chosen such that∣∣∣∣ 1

2t2
(ϕi(t1, ε+ t2)− ϕi(t1, ε− t2))− 1

2t2
(ϕi(0, ε+ t2)− ϕi(0, ε− t2))

∣∣∣∣
is small, then

∣∣ ∂
∂εϕi(t1, ε̃)− ∂

∂εϕi(0, ε)
∣∣ is small. Taking t2 → 0 and t1 → 0, we have

((0, ε), ∂
∂εϕi(0, ε)) ∈ cl

(
gph

(
∂
∂εϕi

))
as desired.

Recall that the graph gph
(

∂
∂εϕi

)
is taken corresponding to the domain (0, t̄] ×

[ε̂1, ε̂2] and is a manifold of dimension 2 in R
3. Its boundary is of dimension 1 [9,

Proposition 3.16], so the intersection of cl
(
gph

(
∂
∂εϕi

))
with {0} × [ε̂1, ε̂2] × R is of

dimension 1 as well and is homeomorphic to a closed line segment. There cannot be
an interval [ε̃1, ε̃2] ⊂ [ε̂1, ε̂2] on which cl

(
gph

(
∂
∂εϕi

)) ∩ {0} × {ε} × R has more than
one value for all ε ∈ [ε̃1, ε̃2] because, by appealing to Proposition 5.6, this implies that
the dimension cannot be 1. We note, however, that it is possible that there exists an
ε̄ ∈ [ε̂1, ε̂2] such that cl

(
gph

(
∂
∂εϕi

))∩{0}×{ε̄}×R is a one-dimensional line segment.
This can happen only for finitely many ε̄ ∈ [ε̂1, ε̂2] due to semi-algebraicity.

In any case, we can contract the interval [ε̂1, ε̂2] if necessary so that cl (gph (
∂
∂εϕi))∩

{0} × {ε} × R is a single point for all ε ∈ [ε̂1, ε̂2]. This means that for any (t, ε̃) →
(0, ε), we have ∂

∂εϕi(t, ε̃) → ∂
∂εϕi(0, ε), establishing the continuity of ∂

∂εϕi(·, ·) on
[0, t̄] × [ε̂1, ε̂2]. A reparametrization allows us to assume that t̄ = 1, and we are
done.

To conclude this section, we remark that the results in this section may be ex-
tended from the semi-algebraic case to the definable case. Since the robust regular-
ization property in Theorem 5.3 is a local property, we can extend the theorem to
tame maps. For the relevant definitions of definability and tame maps, we refer the
reader to [2, 8, 9, 10].

6. Quadratic examples. In this section, we show how the robust regularization
can be calculated for quadratic examples, which are more or less standard in the spirit
of [3, 1]. We write A � 0 for a real symmetric matrix A if A is positive semidefinite.

Theorem 6.1 (Euclidean norm). For any real m×n matrix A and vector b ∈ R
m,

consider the function g : Rn → R defined by

g(x) = ‖Ax+ b‖2.
Then the following properties are equivalent for any point (x, t) ∈ R

n × R:
(i) t ≥ ḡε (x);
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(ii) there exists a real μ such that⎡
⎣ tIm Ax + b εA

(Ax+ b)T t− μ 0
εAT 0 μIn

⎤
⎦ � 0.

Proof. Applying [1, Theorem 4.5.60] shows t ≥ ḡε(x) holds if and only if there
exist real s and μ satisfying

t− s ≥ 0,⎡
⎣ sIm Ax + b εA

(Ax+ b)T s− μ 0
εAT 0 μIn

⎤
⎦ � 0,

and the result now follows immediately.

Since the matrix in property (ii) above is an affine function of the variables x, t,
and μ, it follows that the robust regularization ḡε is “semidefinite-representable,” in
the language of [1]. This result allows us to use ḡε in building tractable representations
of convex optimization problems as semidefinite programs.

An easy consequence of the above result is a representation for the robust regu-
larization of any strictly convex quadratic function.

Corollary 6.2 (quadratics). For any real positive definite n-by-n matrix H,
vector c ∈ R

n, and scalar d, consider the function h : Rn → R defined by

h(x) = xTHx+ 2cTx+ d.

Then the following properties are equivalent for any point (x, t) ∈ R
n × R:

(i) t ≥ h̄ε(x);
(ii) there exist reals s and μ such that

t− s2 + cTH−1c− d ≥ 0,⎡
⎣ sIn H1/2x+H1/2c εH1/2

(H1/2x+H−1/2c)T s− μ 0

εH1/2 0 μIn

⎤
⎦ � 0.

Proof. Clearly t ≥ h̄ε(x) if and only if

‖y − x‖2 ≤ ε ⇒ ‖H1/2y +H−1/2c‖22 ≤ t− d+ cTH−1c.

This property in turn is equivalent to the existence of a real s satisfying

s2 ≤ t− d+ cTH−1c

and ‖y − x‖2 ≤ ε ⇒ ‖H1/2y +H−1/2c‖2 ≤ s,

and the result now follows from the preceding theorem.

Since the quadratic inequality

t− s2 + cTH−1c− d ≥ 0

is semidefinite-representable, so is the robust regularization h̄ε.
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7. 1-peaceful sets. In this section, we prove that X ⊂ R
n nearly radial implies

X is 1-peaceful using the Mordukhovich criterion [21, Theorem 9.40], which relates
the Lipschitz modulus of set-valued maps to normal cones of its graph. The next
section discusses further properties of nearly radial sets and how they are common in
analysis.

The Mordukhovich criterion requires the domain of the set-valued map to be R
n,

so we recall the map Φ̃ε : Rn ⇒ R
n by Φ̃ε(x) = Bε(x) ∩ X . Recall that Φ̃ε|X = Φε

and lipΦε(x) ≤ lip Φ̃ε(x) for all x ∈ X . Let us recall the definitions of normal cones,
the Aubin property, and the graphical modulus.

Definition 7.1 (see [21, Definition 6.3]). Let X ⊂ R
n and x̄ ∈ X. A vector v is

normal to X at x̄ in the regular sense, or a regular normal, written v ∈ N̂X (x̄), if

〈v, x− x̄〉 ≤ o (|x− x̄|) for x ∈ X.

It is normal to X at x̄ in the general sense, or simply a normal vector, written
v ∈ NX(x̄), if there are sequences xν −→

X
x̄ and vν −→

X
v with vν ∈ N̂X(xν).

Definition 7.2 (see [21, Definition 9.36]). For X ⊂ R
n, a mapping S : X ⇒ R

m

has the Aubin property at x̄ for ū, where x̄ ∈ X and ū ∈ S(x̄), if gphS is locally
closed at (x̄, ū) and there are neighborhoods V of x̄ and W of ū such that

S(x′) ∩W ⊂ S(x) + κ |x′ − x|B for all x, x′ ∈ X ∩ V.

The graphical modulus of S at x̄ for ū is

lipS(x̄ | ū) := inf{κ | there are neighborhoods V of x̄, W of ū such that

S(x′) ∩W ⊂ S(x) + κ |x′ − x|B for all x, x′ ∈ X ∩ V }.

If S is single-valued at x̄, then in keeping with the notation of lip in Definition 2.1,
we write lipS(x̄) instead of lipS(x̄ | S(x̄)). Note that this equals lipS(x̄) if S is
continuous at x̄.

A set-valued map S is locally compact around x̄ if there exist a neighborhood V of
x̄ and a compact set C ⊂ Y such that S(V ) ⊂ C. This is equivalent to S(V ) being a
bounded set, which is the case when S is outer semicontinuous and S(x̄) is bounded.
If S is outer semicontinuous and locally compact at x̄, then by [19, Theorem 1.42],
the Lipschitz modulus and the Aubin property are related by

lipS(x̄) = max
ū∈S(x̄)

{lipS(x̄ | ū)}.

In finite dimensions, we need S(x̄) to be bounded and S to be outer semicontinuous
for the formula above to hold.

We now present our result on the relation between 1-peaceful sets and nearly
radial sets. A set X is Clarke regular at x ∈ X if N̂X(x) = NX(x).

Theorem 7.3. If X is nearly radial at x̄ and locally closed there, then X is 1-
peaceful at x̄. The converse holds if X is Clarke regular for all points in a neighborhood
around x̄.

Proof. The graph of Φ̃ε is the intersection of Rn ×X and the set D ⊂ R
n × R

n

defined by

D := {(x, y) | ‖x− y‖ ≤ ε} .

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3098 ADRIAN S. LEWIS AND C. H. JEFFREY PANG

By applying a rule on the normal cones of products of sets [21, Proposition 6.41], we
infer that NRn×X(x, y) = {0}×NX(y). Define the real-valued function g0 : Rn×R

n →
R+ by g0(x, y) :=

1
2 ‖x− y‖2. Then the gradient of g0 is ∇g0(x, y) = (x− y, y − x).

From this point, we assume that ‖x− y‖ = ε. The normal cone of D at (x, y) is
ND(x, y) = R+{(x − y, y − x)} using [21, Exercise 6.7]. On applying a rule on the
normal cones of intersections [21, Theorem 6.42], we get

(7.1) Ngph Φ̃ε
(x, y) ⊂ ({0} ×NX(y)) + R+{(x− y, y − x)}.

Furthermore, if X is Clarke regular at y, the above set inclusion is an equation.
Since X is locally closed at x̄, Φ̃ε is locally closed at x̄ if ε is small enough. By the
Mordukhovich criterion [21, Theorem 9.40], Φ̃ε has the Aubin property at (x, y) if and
only if the graphical modulus lip Φ̃ε(x | y) is finite. It can be calculated by appealing
to the formulas for the coderivative D∗ [21, Definition 8.33] and outer norm |·|+ [21,
section 9D] below:

lip Φ̃ε(x | y) =
∣∣∣D∗Φ̃ε(x | y)

∣∣∣+ (by [21, Theorem 9.40])

= sup
w∈B

sup
z∈D∗Φ̃ε(w)

‖z‖ (by [21, section 9D])

= sup
{
‖z‖ | (w, z) ∈ gphD∗Φ̃ε, ‖w‖ ≤ 1

}
= sup

{
‖z‖ | (−z, w) ∈ Ngph Φ̃ε

(x, y), ‖w‖ ≤ 1
}

(by [21, Definition 8.33])

≤ sup
{
‖z‖ | (−z, w) ∈ ({0} ×NX(y))(7.2)

+R+{(x− y, y − x)}, ‖w‖ ≤ 1
}
.

We can assume that z = y−x with a rescaling, and w = y−x+v for some v ∈ NX(y).
Since ({0}×NX(y))+R+{(x−y, y−x)} is positively homogeneous set, we could find

the supremum of ‖z‖
‖w‖ in the same set, and the formula reduces to

lip Φ̃ε(x | y) ≤ sup
v∈NX(y)

‖y − x‖
‖y − x+ v‖

= sup
v∈NX(y)

‖x− y‖
‖(x− y)− v‖

=
‖x− y‖

d(x− y,NX(y))
.(7.3)

For a fixed x �= y, say x̄, we have 1/lip Φ̃ε(x̄ | y) ≥ d(x̄−y,NX(y))
‖x̄−y‖ . First, we prove

that for any open set W about x̄, we have

(7.4) inf
y∈W∩X

y �=x̄

d(x̄ − y,NX(y))

‖x̄− y‖ = inf
y∈W∩X

y �=x̄

d(x̄− y, N̂X(y))

‖x̄− y‖ .

It is clear that “≤” holds because N̂X(y) ⊂ NX(y), so we proceed to prove the other
inequality. Consider d(x̄− y,NX(y)). Let v ∈ PNX (y)(x̄− y), the projection of (x̄− y)
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onto NX(y). Then v ∈ NX(y), and so there exists yi → y, with yi ∈ W ∩ X , and
vi → v such that vi ∈ N̂X(yi). So

d(x̄− y,NX(y)) = d(x̄− y,R+(v))

= lim
i→∞

d(x̄ − y,R+(vi))

= lim
i→∞

d(x̄ − yi,R+(vi))

≥ lim sup
i→∞

d(x̄− yi, N̂X(yi))

⇒ d(x̄− y,NX(y))

‖x̄− y‖ ≥ lim sup
i→∞

d(x̄− yi, N̂X(yi))

‖x̄− yi‖ .

Thus (7.4) holds. Therefore

lim inf
y→x̄

d(x̄ − y, N̂X(y))

‖x̄− y‖ ≥ 1 implies lim sup
y→x̄

lip Φ̃‖x̄−y‖(x̄ | y) ≤ 1,

so we may now consider only regular normal cones.
By the Moreau decomposition of the polar cones N̂X (y) and N̂X (y)

∗
, we have

d(x̄− y, N̂X(y))2 + d(x̄− y, N̂X(y)∗)2 = ‖x̄− y‖2 for y ∈ X.

Since TX(y)∗ = N̂X(y) always [21, Theorem 6.28(a)], we have

d(x̄− y, N̂X(y))2 + d(x̄− y, TX(y)∗∗)2 = ‖x̄− y‖2 for y ∈ X.

As TX(y) ⊂ TX(y)∗∗ [21, Corollary 6.21], this implies that

(7.5) d(x̄− y, N̂X(y))2 + d(x̄− y, TX(y))2 ≥ ‖x̄− y‖2 for y ∈ X.

Note that if X is nearly radial at x̄, then 1
‖x̄−y‖d(x̄−y, TX(y)) → 0 as ε = ‖x̄− y‖ ↓ 0,

y ∈ X . This means that

1/lip Φ̃‖x̄−y‖(x̄ | y) ≥ 1

‖x̄− y‖d(x̄− y, N̂X(y)) → 1,

so

lim sup
y−→

X
x̄,y 
=x̄

lip Φ̃‖x̄−y‖(x̄ | y) ≤ 1,

where y −→
X

x̄ means y ∈ X and y → x̄.

Recall that Φ̃ε has a closed graph, and hence it is outer semicontinuous [21,
Theorem 5.7(a)]. It is also locally bounded, so

lip Φ̃ε(x̄) = max
y∈Sε(x̄)

lip Φ̃ε(x̄ | y)

by [19, Theorem 1.42]. This gives us lim supε→0 lip Φ̃ε(x̄) ≤ 1, or X is 1-peaceful at
x̄, as needed.

If we assume that X is Clarke regular in a neighborhood of x̄, then formula
(7.5) is an equation. Furthermore, (7.1), (7.2), and (7.3) are all equations. Thus if
limε→0 lip Φ̃ε(x̄) = 1, then

1

‖x̄− y‖d(x̄− y, N̂X(y)) = 1/lip Φ̃‖x̄−y‖(x̄ | y) → 1 as y −→
X

x̄, y �= x̄
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and we have 1
‖x̄−y‖d(x̄ − y, TX(y)) → 0 as y −→

X
x̄ and y �= x̄, which means that X is

nearly radial at x̄.
Finally, 1-peaceful sets are interesting in robust regularization for another reason.

The Lipschitz modulus of the robust regularization over 1-peaceful sets has Lipschitz
modulus bounded above by that of the original function, as the following result shows.

Proposition 7.4. If X is 1-peaceful and F : X → R
n is locally Lipschitz at x̄,

then

lim sup
ε→0

lipFε(x̄) ≤ lipF (x̄).

Proof. We use a set-valued chain rule [21, Exercise 10.39]. Recall the formula
Fε = (F ◦ Φ̃ε) |X . The mapping (x, u) �→ Φ̃ε(x) ∩ F−1(u) is locally bounded because
the map x �→ Φ̃ε(x) is locally bounded. Thus

lipFε(x̄) ≤ lip Φ̃ε(x̄) · max
x∈Φ̃ε(x̄)

lipF (x).

By Theorem 7.3, limε→0 lip Φ̃ε(x̄) ≤ 1. Also, since lipF : Rn → R+ is upper semicon-
tinuous, lim supε→0 maxx∈Φ̃ε(x̄)

lipF (x) ≤ lipF (x̄). Taking limits on both sides gives
us what we need.

8. Nearly radial sets. As highlighted in section 7, nearly radial sets are 1-
peaceful. In this section, we study the properties of nearly radial sets and give exam-
ples of nearly radial sets to illustrate their abundance in analysis.

We contrast the definition of nearly radial sets (given before Proposition 4.5) with
a stronger property introduced by [23], which is the uniform version of the same idea.
This idea was called o(1)-convexity in [22].

Definition 8.1 (nearly convex sets). A set X ⊂ R
n is nearly convex at a point

x̄ ∈ X if

dist (y, x+ TX (x)) = o (‖x− y‖) as x, y → x̄ in X.

The set X is nearly convex if it is nearly convex at every point X.
Clearly if a set is nearly convex at a point, then it is nearly radial there, but the

class of nearly radial sets is considerably broader. For example, the set

X = {x ∈ R
2 : x1x2 = 0}

is nearly radial at the origin but not nearly convex there, since as n → ∞ the points
xn = (n−1, 0) and yn = (0, n−1) approach the origin in X , and yet

dist(yn, xn + TX(xn))
−1 �= o(‖xn − yn‖).

It is immediate that convex sets are nearly convex, and hence nearly radial. A
straightforward exercise shows that smooth manifolds are also nearly convex, and
hence again nearly radial. These observations are both special cases of the following
result, rather analogous to [23, Theorem 2.2]. A set X ⊂ R

n is amenable [21, section
10F] at a point x̄ ∈ X if there is an open neighborhood V of x̄, a C1 mapping
F : V → R

m, and a closed convex set D ⊂ R
m, such that

X ∩ V = {x ∈ V : F (x) ∈ D}
and ND (F (x̄)) ∩N

(∇F (x̄)
∗)

= {0} ,(8.1)
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where ND(·) denotes the normal cone to D, and N(·) denotes null space. If in fact F
is C2, then we call X strongly amenable [21, Definition 10.23] at x̄.

Theorem 8.2 (amenable implies nearly radial). Suppose the set X ⊂ R
n is

amenable at the point x̄ ∈ X. Then X is nearly convex (and hence nearly radial) at
x̄.

Proof. Since X is amenable at x̄, we can suppose property (8.1) holds. Suppose
without loss of generality x̄ = 0, and consider a sequences of points xr, yr → 0 in the
set X ∩ V . We want to show

dist(yr, xr + TX(xr)) = o(‖xr − yr‖).
Without loss of generality we can suppose xr �= yr for all r, and we denote the unit
vectors ‖xr − yr‖−1(xr − yr) by zr. We want to prove

dr = min{‖w + zr‖ : w ∈ TX(xr)} → 0.

The unique minimizer wr ∈ TX(xr) in the above projection problem satisfies

dr = ‖wr + zr‖,
wr + zr ∈ −NX(xr) = −∇F (xr)

∗ND(F (xr)),

〈wr, wr + zr〉 = 0

by [21, Exercise 10.26(d)]. Choose vectors ur ∈ −ND(F (xr)) such that

wr + zr = ∇F (xr)
∗ur.

We next observe that the sequence of vectors {ur} is bounded. Otherwise, we
could choose a subsequence {ur′} satisfying ‖ur′‖ → ∞, and then any limit point of
the sequence of unit vectors {‖ur′‖−1ur′}must lie in the set−ND(F (0))∩N(∇F (0)∗),
contradicting property (8.1).

We now have

0 ≤ d2r = 〈zr,∇F (xr)
∗ur〉 = 〈∇F (xr)zr, ur〉

=
〈∇F (xr)zr − ‖xr − yr‖−1[F (xr)− F (yr)], ur

〉
+

〈‖xr − yr‖−1[F (xr)− F (yr)], ur

〉
.

The first term converges to zero, using the smoothness of the mapping F and the
boundedness of the sequence {ur}. On the other hand, since the set D is convex,
we have F (yr) − F (xr) ∈ TD(F (xr)), and ur ∈ −ND(F (xr)) by assumption, so the
second term is nonpositive, and the result follows.

It is worth comparing these notions to a property that is slightly stronger still:
prox-regularity (in the terminology of [21, section 13F]), or O(2)-convexity [22].

Definition 8.3 (prox-regular sets). A set X ⊂ R
n is prox-regular at a point

x̄ ∈ X if

dist (y, x+ TX (x)) = O
(‖x− y‖2) as x, y → x̄ in X.

Theorem 8.2 (amenable implies nearly radial) is analogous to the fact that strong
amenability implies prox-regularity [21, Proposition 13.32] (see also [22, Proposition
2.3]).

The class of nearly radial sets is very broad, as the following easy result (which
fails for nearly convex sets) emphasizes.
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Proposition 8.4 (unions). If the sets X1, X2, . . . , Xn are each nearly radial at
the point x̄ ∈ ∩jXj, then so is the union ∪jXj.

Proof. If the result fails, there is a sequence of points xr → x̄ in ∪jXj and real
ε > 0 such that

(8.2) dist

(
x̄− xr

‖x̄− xr‖ , T∪jXj (xr)

)
≥ ε for all r.

By taking a subsequence, we can suppose that there is an index i such that xr ∈ Xi

for all r. But then we know

dist

(
x̄− xr

‖x̄− xr‖ , TXi(xr)

)
→ 0,

which contradicts inequality (8.2), since TXi(xr) ⊂ T∪jXj (xr).

A key concept in variational analysis is the idea of Clarke regularity (see, for
example, [6, 7, 21]). We make no essential use of this concept in our development,
but it is worth remarking on the relationship (or lack of it) between the nearly radial
property and Clarke regularity. Note first that nearly radial sets need not be Clarke
regular: the union of the two coordinate axes in R

2 is nearly radial at the origin, for
example, but it is not Clarke regular there.

On the other hand, Clarke regular sets need not be nearly radial.
Example 8.5. Consider the function f : R → R defined by

f(x) =

{
2−n − 2−n−1(2− 2n+1|x|)1+2−n

if 2−n−1 ≤ |x| ≤ 2−n (n ∈ N),
0 if x = 0.

The function f is even, and its graph consists of concave segments on each interval
x ∈ [2−n−1, 2−n], passing through the point 2−n(1, 1) with left derivative zero, and
through the point 2−n−1(1, 1) with right derivative 1 + 2−n. A routine calculation
now shows that this function is everywhere regular, and hence its epigraph epi f is
everywhere Clarke regular. However, epi f is not nearly radial at the origin. To see
this, observe that for each n ∈ N, if we consider the sequence xn = 2−n(1, 1) → (0, 0),
then we have

Tepi f (xn) =
{
(x, y) : y ≥ (1 + 21−n)max{x, 0}} ,

so

dist(0, xn + Tepif (xn)) =
‖xn‖√

2
,

contradicting the definition of a nearly radial set.

This is yet another attractive property for semi-algebraic sets.
Theorem 8.6 (semi-algebraic sets). Semi-algebraic sets are nearly radial.
Proof. Suppose the origin lies in a semi-algebraic set X ⊂ R

n. We will show that
X is nearly radial at the origin.

If the result fails, then there is a real δ > 0 and a sequence of points yr → 0 in X
such that ∥∥∥∥u+

yr
‖yr‖

∥∥∥∥ > δ for all u ∈ TX(yr).
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Hence for each index r there exists a real γr > 0 such that

∥∥∥ z − yr
‖z − yr‖ +

yr
‖yr‖

∥∥∥ > δ for all z ∈ X such that 0 < ‖z − yr‖ < γr.

Consequently, each point yr lies in the set

X0 =
{
y ∈ X | ∃γ > 0 so

∥∥∥ z − y

‖z − y‖ +
y

‖y‖
∥∥∥ > δ for all z ∈ X \ {y} with ‖z − y‖ < γ

}
,

so 0 ∈ clX0.

By quantifier elimination (see, for example, the discussion of the Tarski–Seidenberg
theorem in [2, p. 62]), the set X0 is semi-algebraic. Hence the curve selection lemma
(see [2, p. 98] and [18]) shows that there is a real-analytic path p : [0, 1] → R

n such
that p(0) = 0 and p(t) ∈ X0 for all t ∈ (0, 1]. For some positive integer k and nonzero
vector g ∈ R

n we have, for small t > 0,

p(t) = gtk +O(tk+1),

p′(t) = kgtk−1 +O(tk),

and in particular both p(t) and p′(t) are nonzero. For any such t we know

∥∥∥∥ z − p(t)

‖z − p(t)‖ +
p(t)

‖p(t)‖
∥∥∥∥ > δ

for any point z ∈ X \ {p(t)} close to p(t). Hence for any real s �= t close to t we have

∥∥∥∥ p(s)− p(t)

‖p(s)− p(t)‖ +
p(t)

‖p(t)‖
∥∥∥∥ > δ.

Taking the limit as s ↑ t shows

∥∥∥∥ p(t)

‖p(t)‖ − p′(t)
‖p′(t)‖

∥∥∥∥ ≥ δ for all small t > 0.

But since

lim
t↓0

p(t)

‖p(t)‖ =
g

‖g‖ = lim
t↓0

p′(t)
‖p′(t)‖ ,

this is a contradiction.

By contrast, semi-algebraic sets need not be nearly convex. For example, the
union of the two coordinate axes in R

2 is semi-algebraic, but it is not nearly convex
at the origin.

Acknowledgments. Thanks to Jim Renegar for helpful discussions concerning
Theorem 8.6 (semi-algebraic sets), to Jon Borwein for the statement of the definition
of nearly radial sets before Proposition 4.5, to Mike Todd for his comments that
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