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VARIATIONAL ANALYSIS OF PSEUDOSPECTRA*

ADRIAN S. LEWIST AND C. H. JEFFREY PANGT

Abstract. The e-pseudospectrum of a square matrix A is the set of eigenvalues attainable when
A is perturbed by matrices of spectral norm not greater than e. The pseudospectral abscissa is the
largest real part of such an eigenvalue, and the pseudospectral radius is the largest absolute value of
such an eigenvalue. We find conditions for the pseudospectrum to be Lipschitz continuous in the set-
valued sense and hence find conditions for the pseudospectral abscissa and the pseudospectral radius
to be Lipschitz continuous in the single-valued sense. Our approach illustrates diverse techniques
of variational analysis. The points at which the pseudospectrum is not Lipschitz (or more properly,
does not have the Aubin property) are exactly the critical points of the resolvent norm, which in
turn are related to the coalescence points of pseudospectral components.
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1. Introduction. Analysis using eigenvalues is prevalent in many different areas
of applied mathematics. As we consider perturbations to an n X n complex matrix A
with spectrum A (A), we are led to study the e-pseudospectrum A, : M"™ = C, which
is a set-valued map defined by

Ac(A) = {z | 3E € M™ such that |E| <e,z € A(A+ E)},

where M™ is the space of matrices of size n x n. A well-known equivalent formulation,
assuming [|-|| = |||, as we do throughout, is

Ac(A) ={z]a(A-zl)<e},

where o (A) denotes the smallest singular value of the matrix A. As discussed exten-
sively in [22], the function z — (2] — A)™" is called the resolvent of the matrix A.

Thus the pseudospectra of A are just upper-level sets of the resolvent norm function
na: C\A(A) — Ry defined by

1

na(z) = H(z]— A)_lH = o (A—D)

Pseudospectra may be more informative than eigenvalues in applications where
matrices are nonnormal [22, 13].

The continuity of the spectrum is well known [14]. One immediate question is
whether continuity extends to A.. Since A. is a set-valued map, we ask whether we
have continuity in the Hausdorff metric, and it is known that the answer is yes [17,
Theorem 2.3.7].
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Name of Property Mathematical Statement

[ Lipschitz Continuity l
/

Definition

N
Aubin Property A¢ Aubin at A for z

N

Mordukhovich Criterion

CoderiV;tives D*Ac (A | 2) (0) = {0}

A

Definition of Coderivatives
N
l Normals of gphA. ] (M™ x {0}) N Ngph A, (A, z) ={0}

A

Level sets

N
| Subgradients of ¢® | | (M™ x {0}) NR49c° (A, z) = {0}
7

Toeplitz—Hausdorff theorem
N
[ Numerical Range | 0¢Y (A—=z2I)

/

Subdifferential Calculus

v
[ Sngalar Values | 0§ 0(-24) (2

Fic. 1. Equivalences of properties summarized in Theorem 5.2.

Does the pseudospectrum mapping A, have stronger continuity properties? One
of the main contributions of this paper is to find conditions under which the map
A, is Lipschitz continuous. The ingredients of our analysis are variational-analytic
techniques from the last couple of decades, as described in Rockafellar and Wets [21],
Clarke et al. [10], and Mordukhovich [20]. In particular, we should note that there are
technical details involved in the generalization of Lipschitz continuity to set-valued
maps. Our proof (of the main results in Theorem 5.2 and Proposition 6.3) may be
described loosely by Figure 1. The reader may find the schematic outline helpful as
the argument proceeds.

For the moment, we remark on the notation

QA (Z) :Qe (A?Z) = na (Z)

and Y (A — zI), which refers to the set of the inner products of associated left and
right singular vectors (see page 1050). N refers to the normal cone, 9 refers to the
subdifferential and D* refers to the coderivative. We expand more on the notation of
Figure 1 (see page 1051).

In Figure 1, the six properties on the right on A and z are equivalent. For a
given matrix A, we call points z not satisfying these equivalent properties “resolvent-
critical” because they are smooth or nonsmooth critical points of the norm of the
resolvent n4. When the multiplicity of the smallest singular value of A—zI is one, this
property is equivalent to z being a “degenerate point” (in the sense of [4, Definition
4.5, Corrigendum]|) or not “regular” in the sense of [5, Definition 4.4]. Points not
resolvent-critical are exceptional for several aspects of pseudospectra, notably the
quadratic convergence of the pseudospectral abscissa algorithm in [5].
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1050 A.S. LEWIS AND C. H. J. PANG

As well as our main result equating the absence of the Aubin property with
resolvent-criticality, we derive a variety of other properties of resolvent-critical points
proving, in particular, that points where pseudospectral components coalesce as ¢
grows are resolvent-critical.

As an application of the Lipschitz continuity of A, : M™ = C, we find conditions
for the Lipschitz continuity (in the single-valued sense) and the strict differentiability
of the pseudospectral abscissa o, : M™ — R, and the pseudospectral radius p. :
M™ — Ry defined by

ae (A) :=max{Re(\) | A € Ac (4)},
pe(A) :=max {|A\| | A € A (A)}.

We write M SV : M™ = C" x C", with

MSV (A) := {(u,v) | u,v minimal left and

right singular vectors of A}.

In the above definition of M .SV, u,v are minimal left and right singular vectors of A
if they are unit vectors satisfying

o(A)u = Av
and ¢ (A)v = A u,

where A is the Hermitian transpose of A. A key tool in our analysis is the set
Y (4) == {v"u| (u,v) € MSV (4)}.

We prove that the set Y (A — zI) is the subgradient set at z of the function —g 4 :
C — R_, where g4 (2) = a (A — 2I).

Related to A. is the mapping AS : M™ =3 C defined by A?(A) = {2z | g (A — 2I)
> €}. This mapping turns out to be easier to analyze because —o (-) has the property
of subdifferential regularity (as defined in [21]) except at where it is zero. We show
that the normal cone Npe(4) (2) is Ry (Y (A — 2I)). This establishes a link between

the variational properties of —g 4 and A¢, and the Aubin property.

Notation. For future reference, Tables 1 and 2 summarize the mappings that
appear throughout the paper.

Unless otherwise stated, our notation follows [21]. See also the table of notation
in [21, page 725]. The term “regular” means subdifferentially regular in the sense of
[21, Definition 7.25]. Table 2 summarizes the symbols we use.

The “H” in A” and v represent the Hermitian transpose of a matrix or vector,
while the “*” in L* represents the adjoint of the linear operator L. Note that D*
stands for the coderivative instead. The real inner product on A, B € M™ is defined
by Re tr (AHB) .

Outline. The paper is organized as follows. Section 2 studies the continuity
properties of the pseudospectra A, and its “complement” A¢ via more general feasible-
set mappings. In sections 3, 4, and 5, we prove the main result that A. has the
Aubin property at A for z if and only if 0 ¢ Y (A — 2zI), with section 3 containing
general results on variational analysis and the singular value decomposition, section
4 performing subdifferential calculus, and section 5 finishing the proof of the main
result.
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TABLE 1
Summary of definitions.

Name/domain/range Definition
g:M"™ — Ry & (A) is maximum singular value of A
og: M" — Ry o (A) is minimum singular value of A
agf: M" xC— Ry (A, z) =a(A—zI)
gs:C—Ry o4(z)=0(A—zI)
Ae: M™=C Ac(A)={z|co(A—=zI) <¢e}
A:M*"=C A (A) = Ao (A) = {eigenvalues of A}
AS - M" = C AN(A)={z|c(A—=zI)> €}
ae: M™ — R ac (A) = max,cp (a) Re z
pe: M™ — Ry pe (A) = maXzeAe(A) El
W:M"=C Numerical range/ field of values[15, Definition 1.1.1]
MSV : M™ = C" x C™ | See Definition 3.2
Y: M*"=C See Definition 3.2
TABLE 2
Summary of definitions.
[ Symbol [ Explanation [ Reference from [21] ]
o regular subgradient set Definition 8.3
o subgradient set Definition 8.3
o> horizon subgradient set Definition 8.3
N regular normal cone Definition 6.3
N normal cone Definition 6.4
osc outer semicontinuous Definition 5.4
isc inner semicontinuous Definition 5.4
pos positive hull section 3G
lip S(-]-) | graphical modulus Definition 9.36
lip,,S () | Lipschitz modulus Definition 9.28
limsup (set) outer limit Formula 5(1)
liminf (set) inner limit Formula 5(1)
D*S (- |-) | coderivative Definition 8.33
[T outer norm Formula 9(4)
d(,-) Pompieu-Hausdorff distance | Example 4.13
leveof Level sets: {z | f (z) < a} section 1B
conv convex hull section 1E
bdry boundary of a set
B unit ball {z | |z| < 1}

In section 6, we show how the Lipschitz constant for the map A, can be calculated.
Section 7 gives conditions for the Lipschitz continuity and strict differentiability of
the pseudospectral abscissa o, and the pseudospectral radius p.. Finally, we present
properties of resolvent-critical points in section 8. We prove, in particular, that the
points at which the components of A, (A) coalesce as € grows are resolvent-critical,
and we pose some questions about resolvent-critical points.

2. Feasible-set mappings and continuity of pseudospectra. The pseudo-
spectral mapping A, : M™ = C has two inputs: ¢ € Ry and the matrix in the
argument of A (-). As Ry is one-dimensional, the variation of A.(A) for a fixed
matrix A and variable € is easier to visualize, as implemented in EigTool [24]. Some
attractive results in this direction have been obtained in [7, 8, 18, 1, 17] and elsewhere.
By contrast, in this work we study how A. behaves for a fixed € and a varying matrix
argument, primarily taking a more abstract and systematic approach than [6].
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1052 A.S. LEWIS AND C. H. J. PANG

We study pseudospectra using the language of set-valued analysis as described
in the monograph [21]. We take the definition of inner semicontinuity and outer
semicontinuity in [21, section 5B].

In the next two propositions, let f : R” x R — R™ be a continuous function,
and let T : R = R™ be the mapping defined by

(2.1) T (w) =A{z| f(z,w) € D},

where D is a closed set.

PROPOSITION 2.1. T is outer semicontinuous.

Proof. We just need to check that T has a closed graph (by [21, Theorem 5.7]),
which is easy. 0

Note that the e-pseudospectrum can be written as

Ac(A) ={z]a°(4,2) < ¢}
={z1a" (A 2) € (o0, €]}

If we apply Proposition 2.1, we can deduce that A, is outer semicontinuous. In a sim-
ilar manner, A¢, defined by AS (A) = {z | g° (A, z) > €}, is also outer semicontinuous.
Turning to inner semicontinuity, we begin with a technical result.
PROPOSITION 2.2. Let

Q= CI{I | f(x,tb) Gint(D)}a

so Q@ C T (w). We have
(a) Q Climinf, 5T (w) C T (w).
In the case where m = 1:
(b) If D = (=00, q], then

Q=A{z|f(z,0) =a, x is not a local minimizer of f (-, w)}
U{z | f (z,@) < a}.

(¢c) If D = [, 00), then

Q=A{z|f(z,w) =a, x is not a local mazimizer of f (-, w)}

U{z | f (z,@) > a}.

(d) If a > 0, f is positively homogeneous (that is, Af (-) = f(\-) for A >0) and
either D = (—o0,a] or D = [a,0), then Q = liminf,, ;T (w).

Proof. Property (a) is easy and standard. See, for example, the techniques in
2, 16].

Statements (b) and (c) are clear by the definition of @, so we proceed to prove
statement (d) for the case D = (—o0,a]. (The case D = [a,0) is similar and
is omitted.) From statement (a), we just need to prove that if Z ¢ @, then Z ¢
liminf,, 4T (w). Suppose that Z ¢ Q. We need to consider only Z € T (w), so
we can assume that Z is a minimizer of f (-,w) and f(Z, @) = «. Then there is a
neighborhood Bs (Z) about & such that f(z,w) > f(Z,w) = a if z € Bs(z). If
|z — Z|| < 6/2, then

——x — || < 6 if j is large.
142 J 8
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This means that

(o)) () (o)

(11>H <5>
1+

which implies that Bs o () NT'((1+ %)’J)) = () if j is large enough. So for the sequence

(1+ %)ﬂ) — W as j — 0o, we cannot find a subsequence x; such that z; € T((1+ %)ﬂ))
and z; — Z, and this means that Z ¢ liminf,,_.5 T'(w). ]

The following corollary is immediate from the definition of inner semicontinuity.

COROLLARY 2.3. If T (w) = @, then T is continuous at w. Furthermore, if f is
positively homogeneous, then the converse holds as well.

Proof. The mapping T is continuous if and only if it is both inner and outer
semicontinuous. Apply the last two propositions. 0

Now that we have established conditions for outer and inner semicontinuity for
feasible-set mappings, we shall study the continuity of the pseudospectrum A, and
A¢. Let us consider the case € = 0 first. The map A§ : M™ =% C is not interesting
as A§ (A) = C for all matrices A. We are then led to consider the spectrum Ag = A,
which is well known to be continuous [14, Appendix D].

To extend to € > 0, we may apply Propositions 2.1 and 2.2, combined with the
fact that o4 (-) has no local minimum other than at the eigenvalues [22, Theorem
2.4(i)], to prove the following result. This result is not new and can be found, for
example, in [17, Corollary 2.3.8].

PROPOSITION 2.4. A, : M™ = C is continuous for € > 0.

For A¢ : M™ = C, we obtain the following using Proposition 2.2(d).

PROPOSITION 2.5. AS: M™ = C is outer semicontinuous, but it is inner semi-
continuous at a matriz A if and only if there is no local maximizer Z to o 4 : C — Ry,
with o 4 (Z) = €.

Example 2.6. The mapping A¢ is not continuous at some points. For a con-
crete example of the noncontinuity of A¢, consider the point 0 € A§ (/_1), where
A = diag(1,—1,i,—i) and € = 1. Here A, (A) consists of the union of balls of radius
1 around the diagonal entries, and so we observe that 0 is a local maximum of ¢ ;.
This exhibits an example of the discontinuity of A§ as liminf 4, 5 A (A) C A (A4).

Next, we consider Lipschitz continuity. First, we define the Pompieu—Hausdorff
distance.

DEFINITION 2.7 (see [21, Example 4.13]). For C, D C R" closed and nonempty,
the Pompieu-Hausdorff distance d (C, D) is defined as

d(C,D):=inf{n>0|C CD+nB,DCC+nB}.
Lipschitz continuity is thus defined as follows.
DEFINITION 2.8 (see [21, Definitions 9.26, 9.28]). A mapping S : R® == R™
is Lipschitz continuous if it is nonempty—closed-valued and there exists k € Ry, a

Lipschitz constant, such that d (S (z),S (2')) < k|x — 2’| for all z, 2’ € R", or

S(z") C S(x)+k|z' —z|B for all x, 2" € R™.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1054 A.S. LEWIS AND C. H. J. PANG

The infimum of all k such that there exists a neighborhood V of T such that
Sy S(x)+k|z' —z|B for all x,2’ € V

is the Lipschitz modulus for S at T and is denoted by lip,, S (T).
The Aubin property, which is a localized Lipschitz property, is defined as follows.
DEFINITION 2.9 (see [21, Definition 9.36] Aubin property and graphical modulus).
A mapping S : R™ = R™ has the Aubin property at T for @, where T € R"™ and
u € S(Z), if gph S is locally closed at (Z,u) and there are neighborhoods V' of T and
W of @, and a constant k € Ry such that

SEYNW cCS(x)+ k|2 —z|B for all x,x’ € V.

The graphical modulus of S at T for 4, denoted by lip S (Z | @), is the infimum of all
such k that satisfy the formula above.

If the function f in the feasible-set mapping in formula (2.1) in page 1052 is
smooth, we understand the Aubin Property quite well through [21, Example 9.51].
If D = (—o0,a], we can also analyze the nonsmooth case. In what follows, 0 and
0% denote, respectively, the subgradient set and the horizon subgradient set [21,
Definition 8.3].

Assumptions (a), (b), and (c) in the result below are standard for computing
normals to level sets (see, for example, [21, Proposition 10.3].) Assumption (d) is
needed to apply a chain rule.

THEOREM 2.10. Consider the set-valued map C : R* = R™ defined via a level
set representation

Cp)={z | F(z,p) <a},

with F : R™ x R — R. Suppose that

(a) F(7,p) = a,

(b) (0,0) ¢ OF (z.),

(¢c) F is regular at (Z,p),

(d) (0,92) € 9 F (z,p) = y2=0.

Then C has the Aubin property at p for T if and only if 0 ¢ OF;(Z), where
F5 :R™ — R is defined by Fj (x) := F (z,p). In this case,

lipCpl2) = max _llall,
[loll=1

If F (z,p) < &, then C has the Aubin property at p for T, with lip C (p | ) = 0.

Proof. The Mordukhovich criterion [21, Theorem 9.40] tells us that C' has the
Aubin property at p for Z if and only if D*C (p | ¥) (0) = {0}, where D* denotes the
coderivative [21, Definition 8.33]. This holds if and only if
(2.2) (2,0) € Ngph ¢ (P, Z) implies z = 0.
This property is equivalent to

(0,2) € Ngph o1 (%, p) implies z = 0.

Conditions (a), (b), and (c) allow us to conclude that

(2.3) Ngph c-1 (%,p) = (pos OF (Z,p)) U O™ F (Z,p)
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through a result on level sets [21, Proposition 10.3], or

(0,2) € (pos OF (Z,p)) UO™F (Z,p) implies z = 0,
and by condition (d), this is in turn equivalent to
(2.4) (0,z) € pos OF (Z,p) implies z = 0.

We define Ly : R" — R" x R? by Lj () = («,p). The adjoint L% : R™ x R — R" is
given by L7 (z,p) = . We have F; = F o L, and so by a chain rule [21, Theorem
10.6] and condition (d), 0F} (Z) = L;0F (z,p). Thus

OF; (z) =Ly0F (z,p)
= {y | 3z such that (y,z) € OF (z,p)}.

If 0 € OF; (%), then there exists z such that (0,z) € OF (z,p), but condition (b)
implies z # 0, which contradicts statement (2.4). If 0 ¢ 0F}j (%), this means that
there is no z such that (0, z) € OF (Z,p) and implies statement (2.4). So 0 ¢ 0F}; (%)
is equivalent to C not having the Aubin property at p for Z as claimed.

The calculation of the value lip C (p | Z) follows from the definition of the coderiva-
tive D*C (p | Z) and its relation to the normal cone through the Mordukhovich crite-
rion. If F (Z,p) < &, then the normal cone is {(0,0)}, giving us the required value of
lip C(p| 7). |

To obtain the Lipschitz modulus from the graphical modulus, one may use [21,
Theorem 9.38], but Proposition 6.2 is sufficient for our purposes in this paper.

In sections 3 to 6, we will be using the general principle illustrated in Theorem
2.10 to study where the pseudospectrum A. has the Aubin property and also to
illustrate how this can identify where A, is Lipschitz continuous and give a value of
the Lipschitz constant.

One may immediately try to apply Theorem 2.10 to show that A, has the Aubin
property for A at z. In this case, p = A, © = 2, and so C (p) = A (A), F (z,p) =
o (A —zI)=c°(A,z). However, o€ is not a regular function, but this can be overcome
by studying —c¢ instead, which is regular if A — 2 is nonsingular. This is what we
will do in the analysis that follows.

3. General results. First, we are interested in finding out whether the functions
1

—o® and —; enjoy similar regularity properties so that we can deduce properties of
a®. We recall a result on the reciprocals of functions.

PROPOSITION 3.1 (see [20, Corollary 1.111(iii)]). For any function h : R™ — R
at z where h(z) > 0, we have Oh (z) = h (z)° (=1) (2), and h is regular at z if and
only if —% is regular there.

The set of minimal singular vectors of A, MSV (A), is defined below.

DEFINITION 3.2. For a matriz A, the left and right singular vectors corresponding
to the smallest singular value of A are the pairs (u,v) € C*xC", ||u|| = ||v]| = 1, which
appear in the appropriate columns of U and V' in some singular value decomposition
A=USVH of A. We refer to u and v as minimal singular vectors, and we denote
the set of pairs of minimal singular vectors of A as M SV (A). Furthermore, we define

Y:M"=C by
Y (A) = {v"u | (u,0) € MSV (A)}.

An equivalent definition given in the introduction is to have pairs of unit vectors
(u,v) satisfying the equations o (A)u = Av and o (A)v = Al u.
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1056 A.S. LEWIS AND C. H. J. PANG

The following result summarizes a complete characterization of left and right
minimal singular vectors when we have one particular singular value decomposition,
which is helpful for the case where the smallest singular value is multiple.

ProroSITION 3.3. Consider a matrix A € M™ with singular value decomposition
(for unit vectors uj,v;)

n
A= ZajujvJH =USVH,
j=1

where o1 = 09 = -++ = 0oy, < 0 for all j > m. Define matrices U= (ugug - Up)
and V = (v1vg -+ vy,). Then

MSV (A)={(Uq,Vq) g€ C™ |lq] =1}
if A is invertible (in other words, o1 > 0) and
MSV(A) ={(Uq1,Vaz) | q1,02 € C™, [|aa || = llg=]| = 1}

if A is singular.

Proof. The equations Av = o (A)u and Ay = o (A)v require u to be an
eigenvector for AA® and v to be an eigenvector for A7 A, and so they lie in the
subspaces spanned by the columns of U and V, respectively. We have assumed that
these columns are placed at the left of U and V. Then let v = Vq. As we want a v

of unit length, we must have ||g|| = 1. Since A is invertible, g := g (4) > 0, and so
1 1 - 1 1 I _
u=-Av=-USVHVq= US( >q - U( >q - U(q> - Uqg.
a a a 0 0 0

Thus MSV (A) C {(Uq,Vq) | g€ C™,||g|]| = 1}. The reverse is straightforward.

If A is singular, then as before, u = Ug; and v = Vg for some unit vectors q1, qs.
It is evident that u and v satisfy the relations ¢ (A)u = Av and o (A)v = Ay, so
we are done. O

The significance of Y (A) will become clear later in sections 4 and 5. We first
show a result on Y (A).

PROPOSITION 3.4. If A is invertible, then Y (A) is convex.

Proof. We make the observation that the set Y (A4) can be determined as follows.
Let U and V be as described in Proposition 3.3. The numerical range of a matrix
B € M" is the set {v¥Bv |v e C",|jv|| =1}, denoted by W (B), and is convex by
the Toeplitz—Hausdorff theorem [15, Property 1.2.2]. Then

Y (A) = {vHu | (u,v) € MSV (A)}
={¢"VH"Uq| |q| =1} (by Proposition 3.3)
=W (I_/H[j) , the numerical range of VET,
establishing the convexity of Y (A). 0

For singular matrices A, Y (A) need not be convex. Take, for example, the singular
value decomposition

()G GG
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With this matrix,

0
v ={a(0 1) (})elnecClnl~lel-1f
={qeC|lq =1},
which is not convex.

4. Subdifferential calculus. This section collects some results about subd-
ifferential calculus involving g® : M™ x C — Ry, where g (A,2) = g (A —zI). As
suggested in Figure 1, there is a link between the subdifferential do€ (A, z) and normal
cone Ngpha, (A, z) for 0¢ (A, z) = €. Before we can apply the appropriate theorems in
[21], we have to calculate 0o (A, z), establish regularity properties, and characterize
whether 0 € dg° (4, z).

When the smallest singular value is simple, ¢ and ¢° are analytic, as the next
lemmas assert.

We remind the reader that the spaces M™ and M"™ x C have (real) inner products
defined by

(A,B) =Re tr (A"B) for A,B € M"
and
(X,2),(Y,y)) = Re (tr (X7Y) +2fy) for X,Y € M" and z,y € C.

LEMMA 4.1. If the invertible matriz A has a simple smallest singular value, then
the function g : M™ — Ry is real-analytic at A, with gradient

Vo (A) = uw’

for any (u,v) € MSV (A).

The proof for the above lemma is standard (for example, [4, Theorem 7.1]), while
the lemma below follows by noticing that ¢¢ = o o L and applying the chain rule,
where L : M™ x C — C is defined by L (A,z) = A — zI.

LEMMA 4.2. If 2 ¢ A(A) and A — zI has a simple smallest singular value, then
the function g€ : M™ x C — Ry is real-analytic at (A, z), with gradient

Vo (A4, 2) = (w', —vu)

for any (u,v) € MSV (A — zI).
The next two results are generalizations of Lemmas 4.1 and 4.2 to the nonsmooth
case, and they calculate the subgradients needed in the main result in section 5.
PROPOSITION 4.3. Suppose z ¢ A(A). Then

9 (=) (A, z) = conv{(—uv™ v u) | (u,v) € MSV (A—zI)}.

Furthermore, —c® is reqular at (A, z) and globally Lipschitz.
Proof. We consider the functions

¢ M"xC—-Ry, e : M*—>M"and L: M" xC — M"
defined by

(A, z) 26((A—ZI)_1> ,t(B)y=B'and L(A,2)=A—zI.
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That is, ¢ = Goro L. To evaluate the subdifferential of this function, we apply a chain
rule [21, Theorem 10.6]. Given a matrix B, we seek to evaluate V (1o L) (A, 2)* (B),
which is, by the chain rule, VL(A, 2)*(Vi(A — 2I)*(B)).

As 7 is everywhere Lipschitz, 07 (to L (A, z)) = {0}. Furthermore, since & is
convex, it is regular at ¢ o L (A, z), and so the conditions for [21, Theorem 10.6] are
satisfied.

It is easy to check the identity L* (B) = (B, —trB). (Note that L is linear so
VL =L and VL* = L*.) Using the binomial expansion

(M+A)"'=M"1"—MAM ' +0(A),
it follows that Vi (M) (B) = —M'BM = so Vi (M)* (B) = —M~HBM~H follows
easily.
Next, we evaluate 05° (4, z). Let the singular value decomposition of (A — zI)

be USVH. Then the singular value decomposition of (A — zI)_l is VSTIUH, and
(A=) " =US-VH. So

95 (A, 2) = VL (A, 2)" Vi (A — 21)* 05 ((A - zI)_1> .
We know that
96 (B) = conv {uv™ | ||lu|| = ||v|| = 1, Bv = 6 (B) u, Bu =5 (B) v} .
(See, for example, [23].) Therefore,
0o ((A - zI)_l) = conv {vu' | (u,v) € MSV (A —2I)}.
Then for any (u,v) € MSV (A — zI), we have
VL (A,2)"Vi(A—=zI)" (vu”) =VL(A,2)" (-US VI TUS™'VH)
=0 (A—2I) *VL (A, z2)" (—uv™)
=g (A—zI)7? (—uvH,tr (U’UH))
=g (A—2I)"? (—uvH,vHu) ,
and so

05° (A, z) :Q(A*ZI)_QCOHV{(*U’UH7UHU) | (u,v) € MSV (A—2I)}.

By Proposition 3.1, we conclude that

1
0(—c®) (4,2)=0 (_05) (4, 2)
=5°(A,2) 2 05° (A, z)
= conv { (—uwv™, vHu) | (u,v) € MSV (A —2I)}.
The function —g© is regular at (A4, z) because & is regular and both the chain
rule [21, Theorem 10.6] and Proposition 3.1 guarantee the preservation of regularity.

Also, the function —¢*® is globally Lipschitz because —g® = —g o L is the composition
of two globally Lipschitz functions. ]
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From the definition of A, (A) = {z | g4 () < €}, where g4 : C — Ry is defined
by o4 (2) = o (A —2I), it is clear that the functions o and o, figure prominently
in the study of pseudospectra. The following two results can be seen as nonsmooth
analogues of [4, Theorem 7.1 and Corollary 7.2]. Even though ¢ and o, are not
necessarily smooth, we are able to prove that —g and —g 4 are regular and calculate
their subgradients.

PROPOSITION 4.4. The function —g is reqular at every nonsingular matriz A €
M™, with

0 (—0o) (A) = —conv {uvH | (u,v) € MSV (A)}.

Proof. Define Ly : M™ — M"™ x C by Ly (A) = (4,0), so we have —g, =
(—c®) o Lysn. Clearly Lysn is smooth, with VLpm = I x 0 at all points. (VLym)" :
M™ x C — M™ is just the natural projection. Thus, by appealing to [21, Theorem
10.6] and Proposition 4.3, we get what we need. d

PROPOSITION 4.5. For a matrix A, consider the function g, : C — Ry defined
byo,(z)=a(A—2zI). If z¢ A(A), then

0(—aa)(z) =Y (A=zl),

and —g 4 s reqular at z and globally Lipschitz.

Proof. The proof is similar to the proof above, but we work through the details for
completeness. We note —g 4, = (—cg®)o L, where Ly : C — M" xC, Ly (2) = (4, 2).
Clearly L4 is smooth, with VL4 = 0 x I at all points. Furthermore, (VL4)" :
M™ x C — C is just the natural projection. Thus, by appealing to a chain rule [21,
Theorem 10.6] and Proposition 4.3, we have

9(—a4)(2) = (VLa) 0 (=) (4,2)
=Y (A-zI).

As in Proposition 4.3, g, is globally Lipschitz because it is a composition of two
globally Lipschitz functions. 0

We note that the assumptions that A — zI is nonsingular in Proposition 4.3 and
A is nonsingular in Proposition 4.4 cannot be dropped in the proposition below.

PROPOSITION 4.6. If z € A (A), then —g® is not regular at (A, z). Similarly, —o
is not reqular at A if A is singular.

Proof. Take U and V to the matrices corresponding to the minimal left and right

singular vectors of A — zI in the statement of Proposition 3.3. For small € > 0, we
have

—0“ (A+eUVH 2) = —0°(A,2) — €
and —o® (A—eUVH 2) = —0°(A,z) —e
Hence if (B, z) € 8 (—c®) (A, z), we have
—0“ (AL UV 2) > 0% (A, 2) + ((B,2), (£UV,0)) + o (e)

= —e>e((B,z),(£UV",0)) +o(e).

Dividing by e throughout and taking limits as € | 0, we have

—1>{(B,x), (£UV",0))
— —2>((B,x),(OV",0)) +((B,x), (-UV",0)) =0,
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which is obviously a contradiction. This means that 0 (—c¢) (4, z) = 0. To show that
0 (—c®) (A, z) # 0, we note that for small € > 0, we have

(—urvi’, vifug) € d(—c®) (A+ UV, 2)

by Proposition 4.3, where the minimal left and right singular vectors w1, v, are defined
in the statement of Proposition 3.3. Taking € | 0, this ensures that (—ujvil,vfu,) €
d(—c°)(4, z), and thus d(—c®) (A,z) # 0. Since d(—c®) and J(—c¢®) differ and
appealing to [21, Corollary 8.11], —g*® is not regular at (A, z). The proof for —¢ is
similar. ]

PROPOSITION 4.7. The resolvent norm na : C — R defined by na(z) = ||(z —
A)7Y| is reqular at every point where z ¢ A (A), with

Ona(z) =na(2)°Y (A—2zI).

Proof. From the identity ng = 1/0 4 and Propositions 3.1 and 4.5, we note the
following calculations:

Ona (2) =na (2)2 0 <—nlA> (2)
=n4 (2)20(—a4) (2)
=na(2)°Y(A—zI). O

This motivates the following definition.

DEFINITION 4.8. A point z € C is resolvent-critical for a square matrix A if
either z € A(A) or0 €Y (A — zI).

Thus resolvent-critical points that are not eigenvalues are simply critical points of
the resolvent norm n,4 (in the nonsmooth sense). Recall that, for a locally Lipschitz
function f, 0°f (x), the convex hull of df (z), is the Clarke subdifferential of f at
x and that Z is Clarke-critical if 0 € 9°f (Z). Since o4 is globally Lipschitz, the
following holds as well.

THEOREM 4.9. For a given matriz A, the following are equivalent:

(1) z is resolvent-critical.

(2) z is Clarke-critical for —g 4.

(3) z is Clarke-critical for o 4.

Proof. Since g 4 is Lipschitz, we have 9° (—g 4) () = —0°a 4 (2) by [9, Proposition
2.3.1]. This means that (2) and (3) are equivalent.

Next we prove that (1) implies (2). If z is resolvent-critical, then either z is an
eigenvalue of A or 0 € d(—a,) (2). In the second case, z is Clarke-critical for —g 4
because 0 (—g 4) (2) C 0° (—a4) (2). In the first case, z is a maximizer of —o 4, and
so z is Clarke-critical.

Lastly, we prove that (2) implies (1). If z is not resolvent-critical, then z is not
an eigenvalue, and 0 ¢ 9 (—a 4) (2). But 0 (—ay4) (z) = 0° (—a4) (2) by the regularity
of —o 4 at z, so we are done. d

Ezxample 4.10. Table 3 shows some examples where 0 is a resolvent-critical point
of A. (In the third example, the resolvent-critical point is close to 0 but not exactly at
0.) These plots were obtained with EigTool [24]. The curves represent the boundaries
of the pseudospectra A (A4) for e = 10%, where « is the number corresponding to the
line generated by EigTool in the legend on the right. The third example is found in
[12].
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TABLE 3
Ezxzamples of pseudospectra for Example 4.10.

A [ Diagram
Smooth Saddle
15 [==]-0.009
1 0.0757
05 0.1423
1 1
0 -1 0 0.209
-05 0.2756
. 0.3423
dim=2
15 Jesd 0,409
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Nonsmooth Saddle
15 -0
4 ol 0.2
ol 0.4
05
1 0 ) 0.6
(0 ) °
| 0.8
-05
p—
-1 r— {2
dim=2
-1.5 ) 1.4
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Local minimum of n 4
0
6
ol 0.4
4
1 5 52 5% 54 1
0 1 5 52 5 : .
-1 0 0 1 5 52 0 o
0o 0 O 1 5 st 1.6
0 0 O 0 1 -2
f— >
-4
el 2.4
-6
dim=5
o] 28

We also have an alternative proof to [4, Theorem 9.2] after the remark below.
Remark 4.11. The set

G(z) = {UH(A—ZI)’U|U€V(Z),”UH :1},

where the subspace V (z) C C™ is spanned by all right singular vectors of A — zI as
defined in [4, Section 9], is equal to o (A — zI)Y (A — zI).
PROPOSITION 4.12. If Z is not resolvent-critical and o 4 (Z) = €, then the set
A¢ (A) is Clarke regular at Z, with normal cone Njc(a) (2) = pos (Y (A — 21)).
Proof. This involves applying Proposition 4.5 to a result on level sets [21, Propo-
sition 10.3]. O
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The conditions below on dg® (A4, z) and 9 (—c®) (4, z) are needed in a manner
similar to condition (b) in Theorem 2.10 in the proof of our main result.

PROPOSITION 4.13. The condition (0,0) € 0a® (A, z) holds if and only if z €
A(A). Also, if z ¢ A(A), then (0,0) ¢ 0 (—c°) (4, 2).

Proof. 1f 0¢(A,z) = 0, then (4,z) is a local minimizer, and thus (0,0) €
00 (A, z). On the other hand, if ¢ (A,z) > 0, we need to prove that (0,0) ¢
9o (A, z). We try to evaluate do¢ (A, z). From Proposition 4.3, we know that at
points where the multiplicity of the singular value g (A — zI) is greater than one, o¢
is not differentiable. By [21, Corollary 9.21], c° (A4, z) = 0 at these points. For points
where the multiplicity of the singular value is one, the norm calculation tells us that
the only point in dc® (A, z) has norm at least one; the only element in do® (4, z) is
of the form (uvH ,—vH u), and the matrix part already contributes one to the norm.
So it is impossible that (0,0) € da° (4, 2).

Next, we move on to 9 (—a®) (4,z). Take U,V to be the matrix corresponding
to the left and right singular vectors of A — zI in the sense of Proposition 3.3. Note
that (UVH , 0) represents a direction of linear descent, as

—of (A—i—eUVH,z) =—0°(A,z)—¢
for small ¢, and so we have (0,0) ¢ d(—c®) (A, z). Due to regularity (Proposition
4.3), we have (0,0) ¢ 0 (—a°) (4, 2). d
Despite the fact that o€ is not regular, we are still able to calculate the subdif-

ferential do° (A4, z).
PROPOSITION 4.14. If z ¢ A (A), then

9c° (A, z) = { (wo, —v"u) | (u,v) € MSV (A —2I)}.
Proof. We observe that

0c® (A, z) C =0 (—a°) (4,2)
= conv { (wv¥, —v"u) | (u,v) € MSV (A - 2I)}

by [21, Corollary 9.21] and Proposition 4.3. Next, note that if (B,w) € dg° (4, z),
then

(B,w) € conv { (wv, —vfu) | (u,v) € MSV (A—zI)},

and so we may write (B,w) = Y5 A (w0, —vfu;) for a convex combination of
left and right singular vectors u;, v; corresponding to the smallest singular value. But
since the 2-norm is a strictly convex norm, ||B|| < 1if & > 1 and (u;,v;)’s are not
complex multiples each other. We take a closer look: (B,w) can be written as a
limit of (B;,w;) = Va© (A;, z;), where (A4;,2;) — (A, z) by [21, Corollary 9.21]. Since
| B;|| = 1, it follows that || B|| = 1.

With this, we conclude that (B, w) = (uv*, —v*u) for some (u,v) € MSV (A — zI),
and so

90° (A, 2) C {(uwo™,—v"u) | (u,v) € MSV (A —2I)}.

To prove the other containment, note that, for any (u,v) € MSV (A — zI), we
have

3Qe (A — duv™, z) Vo (A — Suv™, z)}

{
= {(w",~v"u))
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for 0 < 6 < € by Lemma 4.2. Taking limits as 6 | 0, we have (uvH,—vHu) €
0o° (A, z), which completes the proof. O

5. Main result. Before proving our main result, we make a statement about
the normal cones Ngppac (A, 2) and Ngppa, (A, 2). We make use of properties that
we have established in section 4 to establish the link between level sets and normal
vectors.

PROPOSITION 5.1. If e =g (A, z) > 0, then

Ngph ae (4, z) = pos conv { (—uwv™, v | (u,v) € MSV (A —2I)},
Ngpna. (4, 2) = pos { (w0, —v™u) | (u,v) € MSV (A —2I)}.

Proof. Apply a result on level sets [21, Proposition 10.3], Proposition 4.13, and
the fact that —o® is Lipschitz to get

Nepha: (A, 2) = pos (0 (=) (4,2)).

Next, apply Proposition 4.3 to deduce the first result.
By [21, Proposition 10.3] and Proposition 4.14, we have

Ngph A, (A, z) C pos 9c° (4, z)
= pos { (w, —vfu) | (u,v) € MSV (A—zI)}.

Furthermore, if o (A — zI) is simple, then ¢ is smooth and regular at (A, z) by Lemma
4.2, and so the above inclusion holds with equality.

For the opposite containment, take any (u,v) € MSV (A — zI). Consider the
pair

(As, z5) == (1 +6) A— eduwv™, (1 +6) z) for small § > 0.

At these points, o€ is smooth (and thus regular) because the singular value is of

multiplicity one with corresponding singular vectors (u, v), and o (A4s, z5) = €. Thus
(w", —vu) € Nph A, (1+6) A —esuw™, (146)z).

Taking & | 0, we see that (uv?, —vu) € Nypna, (A, 2). Since Ngpna, (4, 2) is a cone,
we have the formula for Ngpna, (4, 2) as claimed. 1]

The following is the main result that summarizes the links between Figure 1 in
the introduction.

THEOREM 5.2. Consider a point z ¢ A(A). Let e = g (A, z). Then the following
are equivalent:

(1) z is not resolvent-critical for A.

(2) AS has the Aubin property at A for z.

(3) Ac has the Aubin property at A for z.

Proof. For the purposes of the proof, we introduce several other properties:

(4) (M x {0}) N Negia: (4, 2) = {0}.

(5) D*AS (A [ 2)(0) = {0}.

(6) (M™'x {0}) ) Ngpna, (4. 2) = {0}.

(7) D*A. (A [ 2) (0) = {0},

Properties (4) and (5) are equivalent because o € D*A¢ (A | z) (@) if and only
if (o, =) € Ngpnac (A, 2) by the definition of coderivatives [21, Definition 8.33].
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Properties (5) and (2) are equivalent by the Mordukhovich Criterion [21, Theorem
9.40]. The same goes for properties (6), (7), and (3).

Next, we show the equivalence of properties (1) and (4). We apply Proposition
5.1 to reduce property (4) to

(M™ x {0}) Npos conv { (—uv™, v7u) | (u,v) € MSV (A—zI)} = {0}.

(1 = 4) Suppose that z is not resolvent-critical, that is, 0 ¢ Y (A — zI), and yet
property (4) fails. Then there is some nonzero pair with second coordinate (the one
in C) zero lying in

pos conv { (—uv™ v u) | (u,v) € MSV (A —zI)}.
This means that there is a convex combination of pairs (fuvH ot u) such that their
second coordinate is zero. Then 0 € Y (A — zI) (appealing to Proposition 3.4), a
contradiction.

(1 < 4) If property (1) fails, there are minimal left and right singular vectors u, v
such that v#u = 0, and then (—uvH, vHu) is a nonzero element in

(M™ x {0}) Npos conv { (—uwv™,v7u) | (u,v) € MSV (A —2I)}.

So we have proved the equivalence of properties (1) and (4). We proceed to prove
the equivalence of properties (1) and (6). We lose regularity, but nevertheless, the
proof still looks similar.

(1 = 6) We prove (4 = 6). If 0 ¢ Y (A — zI), then (M"™ x {0}) N Ngpnac (A, 2) =
{0}. But Proposition 5.1 gives

{0} € (M™ x {0}) N Negpna., (4, 2)
C (M™ x {0}) N —Ngpnag (4, 2)
= {0}

(1< 6). If property (1) fails, there are minimal left and right singular vectors
u,v such that v¥u = 0, and thus (uv?, —vu) is a nonzero element in (M™ x {0}) N
Negph A, (A7Z) o

When we consider fixing the matrix A and increasing €, it is natural to ask whether
the map € — A, (A) is Lipschitz.

PROPOSITION 5.3. Given z € C, the map € — A, (A) has the Aubin property at
a4 (2) for z if and only if 0 ¢ Oo 4 (2), whereas the map € — A (A) has the Aubin
property at g4 (z) for z if and only if 0 ¢ 0(—c,) (2) (or equivalently, assuming
z & A (A), z is not resolvent-critical for A).

Proof. A straightforward application of [21, Theorem 9.41(b)] on o4 gives us
0 ¢ 0g 4 (%) if and only if the map € — lev<.og4 = Ac (A) has the Aubin property at
€ for z, which is the first part of what we seek to prove. The second part is similar,
using Proposition 4.5. O

A particular example worked out in full detail exploiting this is highlighted in [6].

It is natural to ask whether there are any differences between Theorem 5.2 and
the two parts of Proposition 5.3, and it comes down to comparing 9 (—c 4) and 9o 4.
In general, if z is not an eigenvalue of A,

—00,(2) CO(=ga)(2) =Y (A -zI)
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by Proposition 4.5 and [21, Corollary 9.21], but the inclusion can be strict. Consider
the matrix A = diag (1, —1,¢,—¢) in Example 2.6. Here,

9(=c4) (0) ={a+bi|[a]+[b] <1},
so 0 is resolvent-critical while dg 4 (0) = {1, —1,4, —i}.

6. Lipschitz continuity of pseudospectra. The results in the last section
study the Aubin property of the pseudospectra A.. The next natural step is to
evaluate the graphical modulus and investigate the Lipschitz continuity of A..

If o (A — zI) = € > 0, then from Proposition 5.1 and the definition of the coderiva-
tive, we can deduce the formula for D*A¢ (A | z) (¢). To keep the expressions compact,

we understand that (u;,v;) ranges over M SV (A — zI) whenever u;,v; appear in the
formulas below. We have

DA (A 2)(¢)

= {—kZAiuw{I o= =k Xvfui, > Xi=1\ zo,kzo}

_ {c%|zl)\lvf{ul#0} if ¢ #0,
pos {3, Niuvf | > Nvfu; =0} ife=0,
and
D*A (A 2)(¢)
= {kuvH | ¢ = kvflu, k >0, (u,v) € MSV (A—zI)}
{cgﬁi | (u,v)eMSV(A—zI),vHu#O} if ¢ #0,
pos {uv | (u,v) € MSV (A - 2I),v7u=0} ifc=0.

We can then calculate the graphical moduli for A. and A¢ in the theorem below.
THEOREM 6.1. We have the following graphical moduli:

. 1/d(0,Y (A—=zI)) ifag(A—zI) =k,
hpA‘(A|Z){O if o (A—2zI) <k,
e 1/d(0,Y (A—=z2I)) ifg(A—zI) =k,
hpAe(A|z):{0 ifoc(A—zI)>¢€

(Here, we interpret 1/0 = 400.)
Proof. Tt is clear that if o (A — zI) < ¢, then (A4, z) lies in the interior of gph A,
80 Ngpha, (4,2) = {(0,0)}, and so

lip Ac (A | 2) = |D*A (A ] 2)|" =0.

Similarly, lip AS(A | 2) =0if g (A —2I) > e.
Ifog(A—z2I) =eand 0 € Y (A— 2I), then A, and A¢ do not have the Aubin
property at A for z, and so

lip Ac(A|z)=1lip A (4] z) = 0.

By the Mordukhovich criterion [21, Theorem 9.40] and the definition of outer
norms [21, Section 9D], we have lip A¢ (A | z) to be

[d]l
sup sup s
c£0 deD*A¢(A|z)(c) |c|

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1066 A.S. LEWIS AND C. H. J. PANG

or, in other words, the infimum of all k¥ such that
(6.1) de DA (A 2)(¢) = ||d|| < klel.

In view of the formula for D*A¢ (A | z), formula (6.1) is equivalent to

(6.2) HZ )\iuiviH ‘ <k ‘Z /\iviHui

for all (u;,v;) € MSV (A—2zI), A > 0,3\ = 1. To prove that lip A (4] 2) =
1/d(0,Y (A — zI)), it remains to prove that formula (6.2) is equivalent to

(6.3) k>1/d(0,Y (A—zI)).

Suppose that s satisfies formula (6.2). Then for y € Y (A — 2I), we have some
(u,v) € MSV (A — 2I) such that y = v#u. Then
kly| =k ”uHu|

2 [

=1.
Formula (6.3) follows. Next, suppose that k satisfies formula (6.3). If (u;,v;) €
MSV (A—=zI), \; >0 and Y. \; = 1, we have > \jvfu; € Y (A — zI) by the con-
vexity of Y (A — 2I). Thus

| <300 sl

§ : H
H )\iuivi

1
<k ‘Z )\iviHui .

Formula (6.2) follows, and so lip A¢ (A | z) =1/d(0,Y (A — zI)). Similar and simpler
calculations give us lip A (A | z) = 1/d (0,Y (A — zI)). 0

We next turn to the Lipschitz constant for the pseudospectral mapping A.. We
want to find lip,,Ae (A), the Lipschitz modulus of the pseudospectral map at A. For
a set-valued map S : R = R™, we are able to calculate lip, S (&) from the graphical
modulus easily with the following formula.

PROPOSITION 6.2 (see [20, Theorem 1.42]). If S : R™ = R™ is outer semicon-
tinuous and S is locally bounded at T, then

lip,,S (Z) = max lipS(Z|y).
yeS(z)

Thus the Lipschitz constants for A, are easily obtained.
PROPOSITION 6.3. The following expressions are equal:

(i) lipoAe (4),

3 lip A, (A ,
(i) zelgft&){lp (Al 2)}

() _max  {1/d(0.Y (4~ =D)),

(iv) max {1/ |1)Hu’ | (u,v) € MSV (A—2I),0(A—2I) =€} .
Proof. The expressions (i) and (ii) are equal by Proposition 6.2 and the fact
that A, is compact and locally bounded. Then expressions (ii) and (iii) are equal by

Theorem 6.1, and expression (iv) is just an expansion of the definition of Y (-) applied
to expression (iii). O
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7. Pseudospectral abscissa and pseudospectral radius. In this section we
apply our results on Lipschitz continuity of pseudospectra to reexplore earlier work
on the pseudospectral abscissa and pseudospectral radius in [4, 5, 19, 22].

DEFINITION 7.1. Define the e-pseudospectral abscissa a. : M™ — R by

a. (A) = zen/f()i&) Re(z),

and the e-pseudospectral radius p. : M™ — Ry by

(A) = .
pe (A) zéﬁ?fi)'Z'

Note that if € > 0, then p. (A) > 0. We shall establish the continuity properties of
a. and p.. We begin with another routine piece of theory on parametric minimization.

COROLLARY 7.2 (to [21, Corollary 10.14]). Suppose that F : R™ = R" is outer
semicontinuous and maps to compact sets. Define p : R™ — R and P : R™ = R™
below by

= i ) P = i )
p(u) i g (), P(u) arg min g €9
where the lower semicontinuous function g : R™ — R is differentiable at all points in
P (u) for some given u € R™. Then p is
(a) Lipschitz continuous around @ if F' has the Aubin property at u for T for all
Z € P (a), with
lip p(a) <max{|y|:y € S} < o0,
where S = {y | 7 € P(a),y € D*F (a| 7) (Vg (2)};
(b) strictly differentiable at u with Vp (u) =y if S = {y}.
Proof. Let f:R"™ x R™ — R be defined by

f(z,u) = bgpnr (u,z) + g () = { i;(x) gt}?efwlfsg?) 7

Then
p(u) = iréff(:mu), P(u) = argmzinf(x,u).

Since F' is outer semicontinuous, gph F' is closed, so f is proper and lower semicon-
tinuous.

Next, we prove f is level bounded in x locally uniformly in w. That is, for each
u € R™ and « € R, there is a neighborhood V of @ along with a bounded set B C R™
such that {z | f(z,u) <a} C B for all u € V. Note that f(x,u) < o means that
x € F(u) and g(x) < a. Since F' is outer semicontinuous, choose V' such that
F(u) C F(ua)+ B for all w € V, by the characterization of outer semicontinuity in
[21, Proposition 5.12]. The set B can be chosen to be F' (@) + B, and we are done.

Following the notation in [21, Corollary 10.13], for any & € P (@),

M (z,u) :={y | (0,y) € Of (z,u)}
= {y | (y,0) € Oégpnr (@, 7) +{(0, Vg (7)) }}
(by [21, Exercise 8.8(c)])
(Vg (2)) € Nepn r (4, 7)}
(by [21, Exercise 8.14])
= D*F (u|z) (Vg (7))
(by [21, Definition 8.33]).
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Also,

Moo (2,u) :={y | (0,y) € 9= f (z,u)}
= {y [ (y,0) € 0% bgpnr (u,7)}
= {y | (¥,0) € Ngpn r (u,2)}
= D*F(a])(0).
This means that Yoo (4) := Uzep(a) Moo (Z,0) = {0}, so part (a) of [21, Corollary
10.14] applies. Furthermore, Y (%), where Y (-) is defined in [21, Corollary 10.13], is

and so
li %) < max
pp( )—yem) Yl
=max{ly|:z € P(u),y e D'F(u|z)(Vg(x))} < 0.

The rest of the claim follows by [21, Corollary 10.14]. O

The continuity of o and p. can be proved by the following proposition when the
conditions for Lipschitz continuity are absent. The proof is routine.

PRrROPOSITION 7.3. Suppose that F' : R™ =3 R"™ is continuous and maps to compact
sets. If p, P, and g are defined as in Corollary 7.2 with g continuous, then p is
continuous and P is outer semicontinuous.

As a consequence of Corollary 7.2, we obtain the following result.

COROLLARY 7.4. The pseudospectral abscissa a. and pseudospectral radius pe
are Lipschitz continuous at a matriz A if lip, Ac (A) < oo, with Lipschitz constants
bounded above by lip, A, (A).

Proof. Following the notation in Corollary 7.2, take F = A, and g (z) = (—1,z).
Then a. = —p, and we obtain

lip ae (A) <max{|y|:y € D*A (A ] 2z) (-1)
,2€ A (A),Re(z) = ac.(A)}
=max{1/d(0,R_NY (A —zI)):
z€Ac(A),Re(z) = ac(A)}

using our derivative computation before Theorem 6.1. If we take g () = — |z| instead,
then p. = —p, and

. % z
lip pe (4) SmaX{yI:yeD A (A 2) <_|z>’

zeAAMJZ=p4@}

:max{l/d (O,R+ <|;> ﬁY(A—zI)) :

ZGAAMJZpdm}-
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The upper bounds for lip a, (4) and lip p. (A) obtained above are both not greater
than lip, A (4) by Proposition 6.3, and so we are done. d

8. Resolvent-critical points. Resolvent-critical points are crucial throughout
our analysis. They are also, for example, explicitly excluded in the analysis of the
quadratic convergence of the algorithm for finding the pseudospectral abscissa in [5].
We investigate their properties further.

PROPOSITION 8.1. All resolvent-critical points lie in the numerical range of A.

Proof. Suppose that z is resolvent-critical. Then there exists a right singular
vector v of (A — zI) such that v¥ (A — 2I) v = 0, which implies that v# Av = zvflv =
z if |v| = 1. This means that z lies in the numerical range of A. |

PROPOSITION 8.2. For € large enough such that Ac (A) contains the numerical
range of A, W (A), in its interior, the map A, : M™ = C is strictly continuous at A
for any point in A(A), and thus Lipschitz continuous at a neighborhood of A. For a.
and p. to be Lipschitz continuous, we just need the interior of conv A, (A) to contain
W (A).

Proof. For the first part, if A. (A) contains W (A) in its interior, then the points in
the boundary of A, are not resolvent-critical by the previous result. Apply Proposition
6.3.

For the second part, by the proof of Corollary 7.4, it suffices to show that if z
satisfies Re z = a (A) and g (A — zI) = ¢, then z ¢ W (A). But if z satisfies these
conditions, then z € conv A (A). The same goes for p.. d

Remark 8.3. In Table 3 in page 1061, the third example of a 5 x 5 matrix
illustrates that a resolvent-critical can lie outside the convex hull of the spectrum of
A. There is a resolvent-critical point close to 0, but the convex hull of the eigenvalues
is just {—1}.

With all that we have done so far, the following is a natural consequence of [3,
Corollary 8].

COROLLARY 8.4 (to [3, Corollary 8]). Given a matriz A, the set of resolvent-
critical values {o 4 (2) | z resolvent critical for A} is finite.

Proof. This is just the (semialgebraic) set of Clarke-critical values of o, by
Theorem 4.9, which is finite by [3, Corollary 8]. d

With the above result, we arrive at the following appealing result.

COROLLARY 8.5. Given a matriz A, the mappings A, a., and pe are Lipschitz
around A for all but finitely many € > 0, so, in particular, for all small e > 0.

Proof. This is a direct consequence of Theorem 5.2 and Corollaries 8.4 and
74. d

Remark 8.6. The conditions that guarantee Lipschitz continuity of the pseu-
dospectral abscissa a. in the result above are much more general than the conditions
in [4, Corollary 8.3]. Firstly, we do not need the assumption that active eigenvalues
are nonderogatory made in [4, Corollary 8.3], and our current result holds for all but
finitely many e.

Here is another general observation on resolvent-critical points.

THEOREM 8.7. For a fized A, the set of resolvent-critical points is compact,
semialgebraic with empty interior, and contains eigenvalues as isolated points.

Proof. Denote the set of resolvent-critical points by S4. The set S4 is bounded
by Proposition 8.1. It is clear that S4 is semialgebraic. As ¢ 4 is Lipschitz, 9° (—o 4)
has closed graph by [9, Proposition 2.1.5(b)], and thus S4 is closed.

Suppose that S4 does not have empty interior. Note that ¢ 4 has to be constant
on a component by Corollary 8.4, and this would mean that ¢ 4 is constant on a set of
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nonempty interior, which contradicts the fact that g, cannot have minimizers other
than at the eigenvalues of A [4, Theorem 4.2]. Thus S has empty interior.

Lastly, S4 can be written as a union of curves and points in C. If an eigenvalue,
say Z, is not an isolated point in S4, then it is on some curve. This would mean that
o 4 is zero on a curve, which contradicts the fact that o4 is zero only on the set of
eigenvalues, which is a finite set. Thus all eigenvalues are isolated in S4. |

We call AL (A) = {z]|a(A—zI) <€} the strict pseudospectrum of A. The set
AL (A) consists of at most n components (since each component must contain an
eigenvalue [22]), and the number of components is clearly a decreasing function of
€. There will be some points Z € C where some components meet as € increases. If
Al (A) has n components and z lies on the boundary of two components of AL (A),
then the distance between A and the set of matrices with repeated eigenvalues is e
and is attained by some matrix A having Z as a repeated eigenvalue (see [1, Theorem
5.1]): It turns out that such points are resolvent-critical as the next theorem will
show, generalizing [1, Proposition 4.10].

THEOREM 8.8. If Z is a common boundary point of two or more distinct compo-
nents of AL (A), then Z is a resolvent-critical point.

Proof. To reduce notation, let us assume that z = 0. The rest of the proof will
follow by a translation. We look at the structure of A, (A) around 0, where € > 0.
Since A (A) is semialgebraic, A, (A) is locally conic about 0 by [11, Theorem 4.10].
That is, there is an r > 0 and a semialgebraic homeomorphism

h:Ac(A)NrB — [0,1] (Ac (A) N (bdry B))

between the two spaces. Since (A. (A) Nr (bdry B)) is a finite union of arcs, it follows
that the boundary of A, (A) NrB would consist of curves which start from 0 and end
at somewhere on r (bdry B). The diagram below illustrates this.

A(A)NrB [0, 1](Ac(A) Nr(bdry B)

We use a proof by contradiction. Suppose that 0 is not resolvent-critical. Then
0 ¢ Y (A4), and by Proposition 4.12, A¢ (A) is Clarke regular at 0, with normal cone
Npe(ay (0) = RyY (A). Note that Npe(4) (0) is pointed, otherwise 0 € Y (A), contra-
dicting the assumption that 0 is not resolvent-critical.

The set {z | g (A — zI) = €} is semialgebraic and has empty interior since the
only local minimizers of o 4 are eigenvalues of A [4, Theorem 4.2], and so it is a union
of smooth curves. We now prove that the curves are boundaries of both A (A) and
A¢ (A). By considering the sign of o 4, — € on either side of such a curve, we distinguish
three cases. In the following diagram, both Case 1 and Case 2 cannot hold, because
the local maxima and local minima of g 4 are resolvent-critical, and this would make 0
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resolvent-critical as well, since the set of resolvent-critical points is closed by Theorem
8.7.

o(A—=zI)<e o(A—=zI) >e¢
A=zl = M— I) =
Q(A—z])<eg( Ad)=e Q(A—Z])>€g( d)=e
0 0
Case 1 Case 2

Therefore, the general diagram would be as below, with the value of g 4 alternating
above and below € as we circle the origin, crossing the curves where g 4, = €.

Two different arcs cannot be tangent at 0 since Njc(a) (0) will otherwise not be
pointed, as the diagrams below show.

Since A¢ (A) is Clarke regular at 0, its tangent cone Txc(a) (0) is convex, so the
picture above can contain only one sector where g 4 > €. It now follows that 0 cannot
be the boundary point of two components of A’ (4). This completes the proof. 0

If we can prove the following about the pseudospectral abscissa a., then we can
conclude that the pseudospectral abscissa is Lipschitz continuous.

CONJECTURE 8.9. The points where the pseudospectral abscissa a. are attained
are not resolvent-critical.

A natural question to ask after Theorem 8.7 is the following.

CONJECTURE 8.10. The number of resolvent-critical points is finite.
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