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Important properties such as differentiability and convexity of symmetric functions in R
n can be trans-

ferred to the corresponding spectral functions and vice-versa. Continuing to built on this line of research,
we hereby prove that a spectral function F : Sn → R ∪ {+∞} is prox-regular if and only if the underlying
symmetric function f : Rn → R ∪ {+∞} is prox-regular. Relevant properties of symmetric sets are also
discussed.
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1. Introduction

By Sn, On, and Σn we denote, respectively, the space of n × n symmetric matrices, the
orthogonal group on R

n, and the group of n × n permutation matrices. For X ∈ Sn, by
λ(X) ∈ R

n we denote the vector of eigenvalues of X in nonincreasing order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).
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For any x ∈ R
n, by [x] ∈ R

n we denote the vector with the same coordinates as x ordered
nonincreasingly.

A function f : Rn → R ∪ {+∞} is called symmetric if f(x) = f(σx) for all x ∈ dom f :=
{x ∈ R

n : f(x) < +∞} and all σ ∈ Σn. Necessarily, the domain of a symmetric function
is a symmetric set in R

n: x ∈ dom f if and only if σx ∈ dom f for all σ ∈ Σn.

A function F : Sn → R∪{+∞} is called spectral if F (U⊤XU) = F (X) for all X ∈ domF
and all U ∈ On. Necessarily, the domain of a spectral function is a spectral set: X ∈ domF
implies that the orbit {U⊤XU : U ∈ On} is also in domF . Note that if K is a symmetric
set, then

λ−1(K) := {X ∈ Sn : λ(X) ∈ K}

is a spectral set. It is not difficult to see that the spectral functions are in one-to-one
correspondence with the symmetric functions. The relationship is given by the formulae

F (X) = (f ◦ λ)(X) and f(x) = F (Diagx),

where Diagx denotes the n × n diagonal matrix whose diagonal elements are the coor-
dinates of x. Properties of a symmetric function f on R

n and the associated spectral
function F := f ◦ λ on Sn are closely related. Even though the map X 7→ λ(X) can
be very badly behaved, for example it is not everywhere differentiable, many problems
are corrected by the invariance property of f . An illustration of this is given with the
following theorem [7] (see also [11]).

Theorem 1.1 (Convexity preserved). Let the set K in R
n be convex and symmetric

and suppose that the function f : K → R is symmetric. Then the set λ−1(K) is convex
and the spectral function F = f ◦ λ is convex if and only if f is convex.

Differentiability is another property that is preserved, [12, Theorem 1.1], as recalled by
the next theorem. An analogous result also holds for twice (continuously) differentiable
spectral functions, see [14]; for C∞ spectral functions, see [5]; and for analytic spectral
functions, see [15].

Theorem 1.2 (Differentiability preserved). Let the set K in R
n be open and sym-

metric and suppose that the function f : K → R is symmetric. Then the spectral function
F = f ◦ λ is (continuously) differentiable at (around) the matrix X if and only if f is
(continuously) differentiable at (around) the vector λ(X).

In this paper we continue to built on this line of research. We establish that the important
variational property of prox-regularity can be added to the list of properties for which the
transfer principle is valid. The prox-regularity, studied in [16] and [17] in particular, has
proved to be a robust notion of nonsmoothness enjoying nice “geometrical� properties,
generalizing both convex functions and smooth functions. The prox-regularity has also
been used in algorithms, in particular in the identification of active constraints or the
conceptual construction of predictor-corrector algorithms, see for instance [8], [6].

In order to give the precise definition of prox-regularity, we need to recall some basic
definitions, following [19]. A set C ⊂ R

n is said to be locally closed at a point x̄ if C∩V is
closed for some closed neighborhood V of x̄. A function ϕ : Rn → R∪{+∞} is said to be
locally lower semicontinuous at x̄ if ϕ(x̄) is finite and epiϕ := {(x, t) ∈ R

n×R : ϕ(x) ≤ t}
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is locally closed at (x̄, ϕ(x̄)). Given a function ϕ : Rn → R ∪ {+∞}, we say that v ∈ R
n

is a regular subgradient of ϕ at x̄, denoted by v ∈ ∂ϕ(x̄), if ϕ is finite at x̄ and

ϕ(x) ≥ ϕ(x̄) + v⊤(x− x̄) + o(‖x− x̄‖).

As usual, t 7→ o(t) denotes a real-valued function defined in a neighborhood of the origin
0 of R and satisfying o(t)/t → 0 as t → 0. If the function ϕ is infinite at x̄ then we set
∂ϕ(x̄) = ∅. We say that v is a subgradient of ϕ at x̄, written v ∈ ∂ϕ(x̄), if ϕ is finite at
x̄ and there is a sequence xk → x̄ with values ϕ(xk) → ϕ(x̄) and a sequence vk ∈ ∂ϕ(xk)
such that vk → v. Analogously, if ϕ is infinite at x̄ then we set ∂ϕ(x̄) = ∅.

Throughout the text, B(x, r) will denote the open ball with center x ∈ R
n and radius

r > 0. The definition of prox-regular function is then as follows, see [19, Definition 13.27].

Definition 1.3 (Prox-regularity). A function ϕ : Rn → R ∪ {+∞} is called prox-
regular at x̄ for v̄ if ϕ is finite and locally lower semicontinuous at x̄, v̄ ∈ ∂ϕ(x̄) and there
exist δ > 0 and ρ ≥ 0 such that for all x, y ∈ B(x̄, δ) and v ∈ ∂ϕ(x) with ϕ(x) ≤ ϕ(x̄)+ δ
and ‖v − v̄‖ ≤ δ, we have

ϕ(y) ≥ ϕ(x) + v⊤(y − x)−
ρ

2
‖y − x‖2.

The function ϕ is called prox-regular at x̄, if it is prox-regular at x̄ for all v̄ ∈ ∂ϕ(x̄).

The main result of this paper, stating that the prox-regularity is transferred from a sym-
metric function to the corresponding spectral function and vice-versa, is the content of
the following theorem.

Theorem 1.4 (Prox-regularity preserved). Let f be a symmetric lower semicontin-
uous function. Then F = f ◦ λ is prox-regular at X̄ if and only if f is prox-regular at
λ(X̄).

The proof of the above theorem will be given at the end of the paper (Theorem 4.2 in
Section 4). Before, in Section 2, we shall first consider two particular cases of prox-
regular spectral functions, for which a direct proof of the transfer principle can be given.
In Section 3, we shall take a close look at the subdifferentials of spectral and symmet-
ric functions, building tools for our development. We finish this first section by fixing
terminology and notation.

Notation – Terminology. The canonical Euclidean norm on the space Sn of n × n
symmetric matrices, often called the Frobenius norm, is defined by the formula:

‖X‖2 =
n

∑

i,j=1

X2
ij = tr (X2).

The associated inner product is denoted by 〈X, Y 〉 = tr (XY ). The above formula for
the norm in Sn, when restricted to diagonal matrices, corresponds to the Euclidean norm
in R

n (still denoted by ‖ · ‖), since ‖x‖ = ‖Diagx‖. It is also well-known that

‖X‖2 =
n

∑

i=1

λ2
i (X) = ‖λ(X)‖2
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that is

‖X‖ = (‖ · ‖ ◦ λ)(X). (1)

The above relation shows that the Frobenius norm is a spectral function on Sn associated
with the canonical Euclidean norm on R

n.

In the sequel we shall say that two matrices X, Y in Sn admit a simultaneous spectral
decomposition if they are simultaneously diagonalizable in the same orthonormal basis,
that is, if for some orthogonal matrix U ∈ On the matrices U⊤ X U and U⊤ Y U are
diagonal. It is known that X and Y admit simultaneous spectral decomposition if and
only if XY = Y X (see [9]). A more restrictive condition is to assume that the matrices
X and Y admit a simultaneous ordered spectral decomposition, which guarantees that the
obtained diagonal matrices are precisely Diagλ(X) and Diagλ(Y ), that is, the entries in
both diagonals are ordered in a nonincreasing way. The next theorem due to Fan shows
precisely when two matrices X and Y admit simultaneous ordered spectral decomposition
(see [3, Theorem 1.2.1]).

Theorem 1.5 (Fan). Any two matrices X and Y in Sn satisfy the inequality

〈X, Y 〉 = tr (XY ) ≤ λ(X)⊤λ(Y ).

Equality holds if and only if X and Y admit a simultaneous ordered spectral decomposition.

2. Examples of prox-regular spectral functions

In this section, we consider two particular cases of Theorem 1.4 for which the transfer
principle can be established by direct arguments. Namely, we discuss the case of uniform
prox-regular spectral functions and of indicator functions of prox-regular spectral sets. A
common point of both cases is a uniform character of prox-regularity.

2.1. Uniform prox-regularity

The notion of uniform prox-regularity corresponds to the standard prox-regularity with
parameters independent of the subgradients v ∈ ∂ϕ(x̄) (see [2]).

Definition 2.1 (Uniform prox-regularity). A function ϕ : Rn → R ∪ {+∞} is called
uniformly prox-regular at x̄ if there exist δ > 0 and ρ ≥ 0 such that for all x, y ∈ B(x̄, δ)
and v ∈ ∂ϕ(x) with ϕ(x) ≤ ϕ(x̄) + δ, we have

ϕ(y) ≥ ϕ(x) + v⊤(y − x)−
ρ

2
‖y − x‖2.

A uniformly prox-regular locally Lipschitz function is also called proximally smooth or
lower-C2 ([18], [4]). Let us recall that a lower semicontinuous (respectively, a locally
Lipschitz) function f is uniformly prox-regular (at a point x) if and only if f admits a
local representation (around x) of the form

f = g − β‖ · ‖2,

where g is a lower semicontinuous (respectively, continuous) convex function (see [2, Corol-
lary 3.12] and [1, Theorem 4.1] for example). Using this representation a straightforward
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proof of Theorem 1.4 for the case of uniformly prox-regular functions can be given: indeed,
we can write

f ◦ λ = (g − β‖ · ‖2) ◦ λ = g ◦ λ− β‖ · ‖2 ,

the second equality stemming from (1). Thus the result follows from the convex transfer
principle (cf. Theorem 1.1).

2.2. Indicator functions and spectral sets

Let C be a subset of Rn and x̄ ∈ C. A vector v is called a regular normal vector to C at
x̄, denoted by v ∈ NC(x̄), if

v⊤(x− x̄) ≤ o(‖x− x̄‖) for x ∈ C.

A vector v is called a normal vector, denoted by v ∈ NC(x̄), if there exist sequences
xk → x̄ and vk → v with vk ∈ NC(xk). A closed subset C of Rn is called prox-regular
at x̄ ∈ C for v̄ ∈ NC(x̄) if there exist δ > 0 and ρ > 0 such that whenever x ∈ C and
v ∈ NC(x) with ‖x − x̄‖ < δ and ‖v − v̄‖ < δ, then x is the unique nearest point of
{x′ ∈ C : ‖x′ − x̄‖ < δ} to x + v/ρ. The set C is prox-regular at x̄ if this property holds
for every vector v̄ ∈ NC(x̄).

As expected, C is prox-regular if and only if its indicator function is prox-regular at x̄ and,
according to [17, Proposition 1.2], C is prox-regular at x̄ is and only if it is prox-regular at
x̄ for v̄ = 0. Let us now recall from [17, Theorem 1.3] another important characterization
of prox-regularity for sets.

Theorem 2.2 (Prox-regular sets vs distance functions). Let C ⊂ R
n be a closed

set and x̄ ∈ C. Then C is prox-regular at x̄ if and only if the distance function dC is
continuously differentiable on O \ C for some open neighborhood O of x̄.

In the sequel we use the above characterization to get a direct proof of the transfer
principle of prox-regularity for spectral sets, or equivalently, for indicator functions. To
this end we need to establish that the distance function dK(x) := infy∈K ‖x − y‖ to a
symmetric subset K of Rn is a symmetric function. This is one of the conclusions of the
following statement.

Proposition 2.3 (Symmetric distance functions). Let K be a symmetric subset of
R

n. Then the distance function dK to K is symmetric: dK(x) = dK(σx) for all σ ∈ Σn

and x ∈ R
n. Moreover, the distance function Dλ−1(K) to the spectral set λ−1(K) satisfies:

Dλ−1(K) = dK ◦ λ.

Proof. Let x ∈ R
n and σ ∈ Σn. Since we have σK = K, making the change of variables

z = σy we deduce that

dK(σx) = inf
z∈K

‖σx− z‖ = inf
y∈K

‖σx− σy‖ = inf
y∈K

‖x− y‖ = dK(x),

which shows that dK is permutation invariant. To see that Dλ−1(K) is a spectral function
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we fix X ∈ Sn and U ∈ On such that X = U⊤Diagλ(X)U , and we obtain

Dλ−1(K)(X) = inf
Y ∈λ−1(K)

‖X − Y ‖

= inf
Y ∈λ−1(K)

‖U⊤(Diagλ(X))U − Y ‖

= inf
Y ∈λ−1(K)

‖Diagλ(X)− Y ‖

≤ inf
y∈K

‖λ(X)− y‖

= dK(λ(X)).

For the opposite inequality, let us observe that a direct consequence of Theorem 1.5 is the
fact that ‖λ(X) − λ(Y )‖ ≤ ‖X − Y ‖, for any two symmetric matrices X and Y . Using
this we deduce

Dλ−1(K)(X) = inf
Y ∈λ−1(K)

‖X − Y ‖

≥ inf
Y ∈λ−1(K)

‖λ(X)− λ(Y )‖

≥ inf
y∈K

‖λ(X)− y‖

= dK(λ(X)).

The proof is complete.

The following result relates the prox-regularity of symmetric sets with the prox-regularity
of the corresponding spectral sets; in other words, it proves Theorem 1.4 in the particular
case of indicator functions of spectral sets.

Theorem 2.4 (Prox-regular spectral sets). Let K be a symmetric subset of Rn and
let X be an element of λ−1(K). Then the set K is prox-regular at λ(X) if and only if
λ−1(K) is prox-regular at X.

Proof. Observe first that K is closed if and only if λ−1(K) is. We deduce successively

K is prox-regular at λ(X)

⇐⇒ dK is C1 around λ(X) [Theorem 2.2]

⇐⇒ dK ◦ λ is C1 around X [Theorem 1.2]

⇐⇒ Dλ−1(K) is C
1 around X [Proposition 2.3]

⇐⇒ λ−1(K) is prox-regular at X [Theorem 2.2]

which completes the proof.

We end this subsection about spectral sets by stressing an interesting property of the
spectral prox-regular set λ−1(K). Being prox-regular, the projection mapping is locally
unique, that is, there exists a unique nearest point locally around λ−1(K); on the other
hand, being a spectral set, we can get an explicit expression of its projection: if the point
x ∈ K is the nearest point of K to y ∈ R

n, then for any orthogonal matrix U ∈ On,
the matrix U⊤(Diagx)U ∈ λ−1(K) is a nearest matrix of the spectral set λ−1(K) to the
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matrix U⊤(Diag y)U . This result has been recently established in [10, Theorem A.1] and
generalizes several projection results that are used in projection algorithms in a nonconvex
setting (see the introduction of [10] for an overview of this question). Using the material of
this paper we can hereby give an alternative quick proof of the aforementioned result along
the following lines: Since dK is a symmetric function, we have dK(y) = ‖x−y‖ = dK([y]),
thus by Proposition 2.3 we obtain

Dλ−1(K)(U
⊤(Diag y)U)=dK([y])=‖x− y‖ = ‖U⊤(Diagx)U − U⊤(Diag y)U‖,

which proves the desired assertion.

3. Properties of subdifferentials

In order to tackle the general (non-uniform) case, we have to grind our tools: in this
section we study properties of the subdifferentials of spectral and symmetric functions.

Theorem 3.1 below gives a full description of the subdifferential of a spectral function F =
f ◦λ in terms of the subdifferential of the underlying symmetric function f . This result is
a cornerstone for the variational theory of spectral mappings and will play a fundamental
role in our analysis. Results of this kind were initially established for subdifferentials of
convex spectral functions (see [11], [3] for example). A much more general result holds
for the class of lower semicontinuous spectral functions and for the notions of regular,
limiting or Clarke subdifferential (see [13] for details).

Theorem 3.1 (Subdifferential of spectral functions). If f is a lower semicontinu-
ous function, then

∂F (X) = {U⊤(Diag v)U : v ∈ ∂f(λ(X)) and U ∈ On
X}, (2)

where

On
X = {U ∈ On : X = U⊤(Diagλ(X))U}. (3)

We point out that given two matrices X,V ∈ Sn the relation V ∈ ∂F (X) implies that X
and V admit a simultaneous spectral decomposition. Interestingly, when F is a convex
function then the relation V ∈ ∂F (X) implies that X and V admit a simultaneous ordered
spectral decomposition. Indeed, by (2) we have V = U⊤(Diag v)U for some v ∈ ∂f(λ(X))
and U ∈ On

X . Then, by the convexity of F we obtain

F (Y ) ≥ F (X) + 〈V, Y −X〉 for all Y ∈ Sn.

Let σ ∈ Σn be such that σλ(V ) = v and take Y = U⊤(Diagσλ(X))U . Then the above
inequality yields

F (X)− λ(V )⊤λ(X) = F (Y )− 〈V, Y 〉 ≥ F (X)− 〈V,X〉,

whence 〈V,X〉 ≥ λ(V )⊤λ(X), which in view of Theorem 1.5 shows that X and V admit
a simultaneous ordered spectral decomposition.

The fact that convexity of F is crucial for the conclusion that X and V admit a simulta-
neous ordered spectral decomposition is illustrated by the following example.
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Example 3.2 (Unordered decomposition). Consider the symmetric function f(x1,x2)
= x1x2. It follows easily that the spectral function f ◦ λ is differentiable at the point
X = Diag (1, 2) with gradient V = Diag (2, 1). Obviously the matrices X and V are
simultaneously diagonalizable (and then admit simultaneous spectral decomposition), but
they do not have a simultaneous ordered spectral decomposition.

In the convex case the property that the matrices X and V admit a simultaneous ordered
spectral decomposition simplifies significantly the variational analysis. We can indeed
relate the size of the subgradients of the functions f and F , with the estimation

‖λ(V )− λ(V ′)‖ ≤ ‖V − V ′‖, (4)

holding with equality if and only if V and V ′ admit a simultaneous ordered spectral
decomposition (as a direct consequence from Theorem 1.5). On the other hand, if f
is a general lower semicontinuous spectral function, the group of permutations over the
coordinates should be taken into account: forthcoming Theorem 3.6 will thus be very
useful for our purposes.

Given x ∈ R
n and v ∈ ∂f(x) the following set of permutations appears naturally in our

study: Sx,v = {σ ∈ Σn : σv ∈ ∂f(x)} , (5)

that is, permutations that applied to v remain in the subdifferential.

Remark 3.3 (Permutations leaving x invariant). It is straightforward to see that
for every permutation σ ∈ Σn and any x ∈ R

n we have

∂f(σx) = σ∂f(x).

Thus, any permutation σ ∈ Σn leaving x invariant (that is, σx = x) belongs in particular
to Sx,v for any v ∈ ∂f(x). On the other hand, the example of the constant function
f(x1, x2) = 0, for all (x1, x2) ∈ R

2 or of the (symmetric) function

g(x1, x2) = min{|x1 − x2 − 1|, |x1 − x2 + 1|}

show that, in general, the set Sx,v may contain more elements. Indeed, take (in both
cases) x = (1, 0), and let u = (0, 0) ∈ ∂f(x), v = (1,−1) ∈ ∂g(x) and σ the non–trivial
permutation of Σ2.

The following lemma is taken from [13, Proposition 3].

Lemma 3.4 (Simultaneous conjugacy). Given vectors x, y, u and v in R
n, there is

a matrix U ∈ On with

Diagx = U⊤(Diagu)U and Diag y = U⊤(Diag v)U

if and only if there is a permutation σ ∈ Σn with x = σu and y = σv.

Let us continue our analysis with the following technical lemma stating that if two subgra-
dients of the spectral function F are close to each other, then the underlying subgradients
of the corresponding symmetric function f are also nearby up to a permutation.
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Lemma 3.5 (Proximity of subgradients). Consider a subgradient V̄ of the function
F at the matrix X̄, and the corresponding decomposition V̄ = Ū⊤(Diag v̄)Ū , where Ū ∈
On

X̄
, v̄ ∈ ∂f(x̄) and x̄ = λ(X̄). Then for every ε > 0, there exists δ ∈ (0, ε) such

that for any V ∈ ∂F (X) with corresponding decomposition V = U⊤(Diag v)U for some
v ∈ ∂f(λ(X)) and U ∈ On

X satisfying

‖X − X̄‖ ≤ δ and ‖V − V̄ ‖ ≤ δ

there exists a permutation σ ∈ Sx̄,v̄ such that ‖v − σv̄‖ ≤ ε.

Proof. Let us assume, towards a contradiction, that there exist ε > 0 and sequences
Xk → X̄, Vk → V̄ , Uk ∈ On

Xk
, and vk ∈ ∂f(λ(Xk)) satisfying

Xk = Uk
⊤(Diagλ(Xk))Uk and Vk = Uk

⊤(Diag vk)Uk (6)

such that

∀σ ∈ Sx̄,v̄ ‖vk − σv̄‖ > ε. (7)

Let {σk}k≥1 ⊂ Σn be such that vk = σkλ(Vk), for all k ≥ 1. Since On is compact, there
is no loss of generality to assume that Uk → U . Since Σn is finite, it follows by the
continuity of λ(·) that vk approaches ṽ := σ̃ λ(V̄ ) for some σ̃ ∈ Σn. Let us now observe
that

V̄ = U⊤(Diag ṽ)U = Ū⊤(Diag v̄)Ū ,

yielding

Diag ṽ = (UŪ⊤)(Diag v̄)(UŪ⊤)
⊤
.

Since U, Ū ∈ On
X̄
, we also have

Diag x̄ = (UŪ⊤)(Diag x̄)(UŪ⊤)
⊤
.

Applying Lemma 3.4 together with Remark 3.3, we conclude that there is a permutation
σ̄ ∈ Sx̄,v̄ such that ṽ = σ̄v̄. This contradicts (7) and the proof is complete.

Theorem 3.6 (Proximity up to a permutation). Let V̄ be a subgradient of F at X̄
and let V̄ = Ū⊤(Diag v̄)Ū be its corresponding decomposition, where Ū ∈ On

X̄
, v̄ ∈ ∂f(x̄)

and x̄ = λ(X̄). Then there exists δ̃ > 0 such that for all δ ∈ [0, δ̃) and all V ∈ ∂F (X)
with decomposition V = U⊤(Diag v)U for v ∈ ∂f(λ(X)) and U ∈ On

X satisfying

‖X − X̄‖ ≤ δ and ‖V − V̄ ‖ ≤ δ

there exists

σ ∈ Sx̄,v̄ such that ‖v − σv̄‖ ≤ δ.

Thus, by (5), we have dist(v, ∂f(x̄)) ≤ δ.

Proof. Let us set

∆ = min {‖σv̄ − τ v̄‖ : τ ∈ Sx̄,v̄, σ 6∈ Sx̄,v̄} > 0. (8)
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Applying Lemma 3.5 with ε = ∆/3 we get a constant δ̃ > 0 (with ∆/3 > δ̃) and a
permutation τ ∈ Sx̄,v̄ such that ‖v − τ v̄‖ ≤ ∆/3. Let us now consider the permutations
σ, σ̄ such that v = σλ(V ) and v̄ = σ̄λ(V̄ ), so that

‖v − σσ̄−1v̄‖ = ‖σ−1v − σ̄−1v̄‖ = ‖λ(V )− λ(V̄ )‖ ≤ ‖V − V̄ ‖.

Thus setting ω = σσ̄−1 we have ‖v − ωv̄‖ ≤ ‖V − V̄ ‖ ≤ δ̃ ≤ ∆/3. To conclude, it is
sufficient to show that ω ∈ Sx̄,v̄. Indeed,

‖ωv̄ − τ v̄‖ ≤ ‖ωv̄ − v‖+ ‖v − τ v̄‖ ≤ ∆/3 + ∆/3 < ∆,

which in view of (8) yields that ω ∈ Sx̄,v̄. The proof is complete.

4. Prox-regularity of spectral functions

To prove our main result, we need the following characterization of prox-regularity for the
case of symmetric functions.

Lemma 4.1 (Prox-regularity of symmetric functions). Let f be a lower semicon-
tinuous symmetric function. Then f is prox-regular at x̄ for v̄ ∈ ∂f(x̄) if and only if there
exist ρ > 0 and δ > 0 such that for all x, y ∈ B(x̄, δ) and v ∈ ∂f(x) with f(x) ≤ f(x̄) + δ
and ‖v − v̄‖ ≤ δ we have

f(σy) ≥ f(x) + v⊤(σy − x)−
ρ

2
‖σy − x‖2 for all σ ∈ Σn. (9)

Proof. The sufficiency of the above condition is obvious (just take σ = id). Let us prove
the necessity part. The prox-regularity of f at x̄ for v̄ gives δ̃ > 0 and ρ̃ > 0 such that
for all x, z ∈ B(x̄, δ̃) and v ∈ ∂f(x) satisfying ‖v − v̄‖ ≤ δ̃ and f(x) ≤ f(x̄) + δ̃ we have

f(z) ≥ f(x) + v⊤(z − x)−
ρ̃

2
‖z − x‖2.

Let us pick any
L > ‖v̄‖+ δ̃ (10)

and let us use the lower-semicontinuity of f to obtain a positive constant

δ ≤ min {1, δ̃} (11)

such that for all y ∈ B(x̄, δ)
f(y) ≥ f(x̄)− L+ δ̃. (12)

Let us finally set
ρ ≥ max

{

ρ̃, 4L/δ2
}

.

Having defined the constants δ, ρ > 0 let us take σ ∈ Σn, x, y ∈ B(x̄, δ) and v ∈ ∂f(x)
such that ‖v − v̄‖ ≤ δ and f(x) ≤ f(x̄) + δ. We aim to prove that (9) holds. Observe
that this is indeed the case whenever ‖σy− x‖ ≤ δ̃, so we may assume ‖σy− x‖ > δ̃. Let
us further set

∆1 = f(x̄)− L+ δ̃ and ∆2(µ) = f(x̄) + δ̃ + Lµ−
ρ

2
µ2 (µ ∈ R) .
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Claim. ∆1 ≥ ∆2(µ) for all µ ∈ (δ,+∞).

Proof of the Claim. We need to show that the inequality

ρ

2
µ2 − Lµ− L > 0,

holds for all µ ∈ (δ,+∞). The discriminant of the left-hand side, as a polynomial in µ, is
strictly positive. It is easy to see that since ρ ≥ 4L/δ2 its larger root satisfies

L+
√

L(L+ 2ρ)

ρ
≤ δ.

This proves the claim.

We further infer from (12) and the invariance of f that

f(σy) = f(y) ≥ ∆1, (13)

while using (10) we deduce that

‖v‖ ≤ ‖v̄‖+ δ ≤ ‖v̄‖+ δ̃ < L .

Let us set µ := ‖σy − x‖ > δ̃ and note that in view of (11) we have µ > δ. We thus
deduce

f(x) + v⊤(σy − x)−
ρ

2
‖σy − x‖2 ≤ (f(x̄) + δ̃) + ‖v‖µ−

ρ

2
µ2 ≤ ∆2(µ) .

Since ∆1 ≥ ∆2(µ) we obtain from (13) that

f(σy) ≥ f(x) + v⊤(σy − x)−
ρ

2
‖σy − x‖2,

which completes the proof.

We are now in position to prove the main result of this work.

Theorem 4.2 (Main result). Let f be a symmetric lower semicontinuous function.
Then f is prox-regular at λ(X̄) if and only if F = f ◦ λ is prox-regular at X̄.

Proof. (⇐). Suppose that F is prox-regular at X̄ for any V̄ ∈ ∂F (X̄). Then, it is easy
to see that f is prox-regular at λ(X̄) for any v̄ ∈ ∂f(λ(X̄)) by using (4) and the formula
f(x) = F (U⊤(Diagx)U).

(⇒). Assume that f is prox-regular at λ(X̄). We need to prove that F is prox-regular
at X̄ for any V̄ ∈ ∂F (X̄). Set x̄ = λ(X̄), let, by Theorem 3.1, v̄ ∈ ∂f(x̄) and Ū ∈ On

X̄
be

such that V̄ = Ū⊤(Diag v̄)Ū . To prove the prox-regularity of F at X̄ for V̄ , we proceed
in three steps:

• the first step consists in fixing the values of the parameters δ, ρ > 0 ;

• in the second step we introduce the working variables in Sn and R
n ;

• in the final step, we deduce the inequality of prox-regularity of F at X̄ from the one
of f at x̄.
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Step 1: Choice of parameters. We first apply Theorem 3.6 with respect to V̄ ∈ ∂F (X̄)
(and its given decomposition V̄ = Ū⊤(Diag v̄)Ū , with Ū ∈ On

X̄
, v̄ ∈ ∂f(x̄) and x̄ = λ(X̄))

to obtain δ̃ > 0. Then, for each τ ∈ Sx̄,v̄, we use the prox-regularity of f at x̄ for
τ v̄ ∈ ∂f(x̄) to get δτ > 0 and ρτ > 0 by Lemma 4.1. We then set

δ = min
{

{δτ , τ ∈ Sx̄,v̄} ∪ {δ̃}
}

and ρ = max
{

ρτ , τ ∈ Sx̄,v̄

}

.

Step 2: Definition of variables. Consider X, Y, V ∈ Sn such that

‖Y − X̄‖ ≤ δ, ‖X − X̄‖ ≤ δ, V ∈ ∂F (X), F (X) ≤ F (X̄) + δ and ‖V − V̄ ‖ ≤ δ

and set F(X,V, Y ) = F (X) + 〈V, Y −X〉 −
ρ

2
‖Y −X‖2 .

Our aim is to prove thatF(X,V, Y ) ≤ F (Y ). To this end, we set x = λ(X) and y = λ(Y ),
and we introduce v ∈ ∂f(x) and U ∈ On

X such that V = U⊤(Diag v)U . Observe that, by
(4), we have x, y ∈ B(x̄, δ); by the property of F = f ◦ λ, we have f(x) ≤ f(x̄) + δ; and
by Theorem 3.6, we have

‖v − τ v̄‖ ≤ δ (τ ∈ Sx̄,v̄) . (14)

Moreover, since X and V admit a simultaneous spectral decomposition, there exists σ ∈
Σn such that

λσ(i)(V + ρX) = vi + ρxi , (15)

where x = (x1, . . . , xn) and v = (v1, . . . , vn).

Step 3: Final argument. Let us note thatF(X,V, Y ) = F (X)−
ρ

2
(‖X‖2 + ‖Y ‖2)− 〈V,X〉+ 〈V + ρX, Y 〉 , (16)

and let us observe that

F (X)−
ρ

2
(‖X‖2 + ‖Y ‖2) = f(x)−

ρ

2
(‖x‖2 + ‖y‖2). (17)

On the other hand, the term 〈V,X〉 in (16) can be rewritten as follows:

〈V,X〉 = 〈UV U⊤, UXU⊤〉 = 〈Diag v,Diagx〉 = v⊤x. (18)

Let us now focus on the term 〈V + ρX, Y 〉. Using Theorem 1.5, we deduce that

〈V + ρX, Y 〉 ≤ λ(V + ρX)⊤λ(Y ),

and after rearranging the sum by means of the permutation σ given in (15) we obtain

〈V + ρX, Y 〉 ≤
n

∑

i=1

(vi + ρxi)
⊤yσ(i) = v⊤ (σy) + ρx⊤ (σy) . (19)
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Then combining (16) with (17), (18) and (19) we deduceF(X,V, Y ) ≤ f(x) + v⊤(σy − x)−
ρ

2
(‖x‖2 + ‖y‖2 − 2x⊤(σy)),

which, in view of ‖y‖ = ‖σy‖ yieldsF(X,V, Y ) ≤ f(x) + v⊤(σy − x)−
ρ

2
‖σy − x‖2 .

We conclude applying (9): from (14), the prox-regularity of f at x̄ for τ v̄ yieldsF(X,V, Y ) ≤ f(σy) = f(y) = F (Y ) .

The proof is complete.

References

[1] D. Aussel, A. Daniilidis, L. Thibault: Subsmooth sets: functional characterizations and
related concepts, Trans. Amer. Math. Soc. 357(4) (2005) 1275–1301.

[2] F. Bernard, L. Thibault: Uniform prox-regularity of functions and epigraphs in Hilbert
spaces, Nonlinear Anal., Theory Methods Appl. 60A(2) (2005) 187–207.

[3] J. M. Borwein, A. S. Lewis: Convex Analysis and Nonlinear Optimization, 2nd Ed.,
Springer, New York (2006).

[4] F. Clarke, R. Stern, P. Wolenski: Proximal smoothness and the lower-C2 property, J.
Convex Analysis 2(1-2) (1995) 117–144.

[5] J. Dadok: On the C∞ Chevalley’s theorem, Adv. Math. 44 (1982) 121–131.

[6] A. Daniilidis, W. Hare, J. Malick: Geometrical interpretation of proximal-type algorithms
in structured nonsmooth optimization, Optimization 55(5-6) (2006) 481–503.

[7] C. Davis: All convex invariant functions of hermitian matrices, Arch. Math. 8 (1957) 276–
278.

[8] W. Hare, A. S. Lewis: Identifying active constraints via partial smoothness and prox-
regularity, J. Convex Analysis 11(2) (2004) 251–266.

[9] R. A. Horn, Ch. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge
(1989); new Ed. (1999).

[10] A. S. Lewis, J. Malick: Alternating projections on manifolds, Math. Oper. Res. 33(1) (2008)
216–234.

[11] A. S. Lewis: Convex analysis on the Hermitian matrices, SIAM J. Optim. 6 (1996) 164–177.

[12] A. S. Lewis: Derivatives of spectral functions, Math. Oper. Res. 21 (1996) 576–588.

[13] A. S. Lewis: Nonsmooth analysis of eigenvalues, Math. Program. 84(1) (1999) 1–24.

[14] A. S. Lewis, H. S. Sendov: Twice differentiable spectral functions, SIAM J. Matrix Anal.
Appl. 23(2) (2001) 368–386.

[15] M. K. H. Fan, N.-K. Tsing, E. I. Verriest: On analyticity of functions involving eigenvalues,
Linear Algebra Appl. 207 (1994) 159–180.

[16] R. A. Poliquin, R. T. Rockafellar: Prox-regular functions in variational analysis, Trans.
Amer. Math. Soc. 348 (1996) 1805–1838.



560 A. Daniilidis, A. Lewis, J. Malick, H. Sendov / Prox-Regularity of Spectral ...

[17] R. A. Poliquin, R. T. Rockafellar, L. Thibault: Local differentiability of distance functions,
Trans. Amer. Math. Soc. 352 (2000) 5231–5249.

[18] R. T. Rockafellar: Favorable classes of Lipschitz continuous functions in subgradient op-
timization, in: Progress in Non-Differentiable Optimization, IIASA Collaborative Pro-
ceedings Series, International Institute of Applied Systems Analysis, Laxenburg, Austria,
E. Nurminski (ed.), (1982) 125–143.

[19] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis, Springer, Berlin (1998).


