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THE LOJASIEWICZ INEQUALITY FOR NONSMOOTH
SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO
SUBGRADIENT DYNAMICAL SYSTEMS*

JEROME BOLTE', ARIS DANIILIDIS}, AND ADRIAN LEWISS

Abstract. Given a real-analytic function f : R™ — R and a critical point a € R™, the Lojasiewicz
inequality asserts that there exists 6 € [%, 1) such that the function |f — f(a)|? |[Vf||~' remains
bounded around a. In this paper, we extend the above result to a wide class of nonsmooth functions
(that possibly admit the value +00), by establishing an analogous inequality in which the derivative
V f(z) can be replaced by any element x* of the subdifferential f(x) of f. Like its smooth version,
this result provides new insights into the convergence aspects of subgradient-type dynamical systems.
Provided that the function f is sufficiently regular (for instance, convex or lower-C?), the bounded
trajectories of the corresponding subgradient dynamical system can be shown to be of finite length.
Explicit estimates of the rate of convergence are also derived.
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1. Introduction. Let U be a nonempty open subset of R" equipped with its
canonical Euclidean norm || - ||, and let f : U — R be a real-analytic function.
According to the Lojasiewicz gradient inequality [16, 17, 18], if a € U is a critical
point of f, that is, V f(a) = 0, then there exists 6 € [0,1) such that the function

f - Fla)?
o il

remains bounded around the point a. (Throughout this work we set 0° = 1, and we
interpret A/0 as 400 if A > 0 and 0 if A =0.)

Recently, Kurdyka [13, Theorem 1] has extended the above result to C! functions
whose graphs belong to an o-minimal structure (see [8], for example), and thus in
particular to “globally subanalytic” functions. On the other hand, (1) might fail
for C*° functions with no “adequate” geometric structure. Such functions can either
satisfy a weaker condition (i.e., § = 1) or present wild oscillations around their critical
point, preventing any comparison between their value and the norm of their gradient.
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The following one-dimensional examples illustrate failures of these two types (around
the critical point a = 0):

i { PG L o { U

The aim of this note is to establish a nonsmooth version of the Lojasiewicz in-
equality (1) for lower semicontinuous convex subanalytic functions (Theorem 3.3) and
for continuous subanalytic functions (Theorem 3.1). A first and simple illustration
is given by the example of the Euclidean norm function h(x) = ||z||, which satisfies
(1) for every 6 € [0,1) around zero (which is a “generalized” critical point; see Def-
inition 2.11) but is not differentiable at 0. Behavior of this type is hereby shown
to hold true for a large class of nonsmooth functions, leading to the conclusion that
the Lojasiewicz inequality is more linked to the underlying geometrical structure of f
than to its smoothness.

Given an extended-real-valued subanalytic function f : R® — R U {+o0}, our
approach to generalizing property (1) relies on a one-sided notion of generalized gra-
dients called subgradients. For both a mathematical and a historical account on this
notion, as well as for classical results in nonsmooth analysis, one is referred to the
monographs of Clarke et al. [7] and Rockafellar and Wets [20].

Subgradients are obtained according to a two-stage process. First the equality in
the definition of the usual gradient is relaxed into an inequality (Definition 2.10(i)):
this gives rise to the notion of Fréchet subgradients. Then, by a closure operation, the
so-called limiting subdifferential 0f can be defined (Definition 2.10(ii)). This notion
constitutes the basis for the generalization of the Lojasiewicz inequality to nonsmooth
functions. Let us also mention that in this formalism Fermat’s rule reads as follows:
if a is a local minimizer of f, then 9f(a) > 0; conversely, if a € R™ is such that
df(a) 3 0, the point a is called a critical point.

Variational analysis and subdifferential calculus provide a framework for the
modeling of unilateral constraints in mechanics and in partial differential equations
[11, 6, 9]. Such a calculus is also central in optimization. In particular it provides
variational tools to treat constrained and unconstrained minimization problems on
an equal theoretical level. This stems from the simple fact that minimizing f over a
closed set C' amounts to minimizing f + 8¢ over R™, where 6¢ is the indicator function
of C; that is

0 ifx € C,
+o00  otherwise.

2) sole) = {

Those domains have as a common topic the behavior at infinity of dynamical
systems governed by subdifferential operators; see [15] for an insight in optimization.
An important motivation that drove us to transpose the Lojasiewicz result into a
nonsmooth context is precisely its expected consequences in the asymptotic analysis
of such subgradient-type dynamical systems. Those are modeled on the following type
of differential inclusion:

@(t) € —0f(x(t), t>0, z(0)eR",

where for any x € R™, df(x) denotes the set of limiting subgradients. The above
differential inclusion generalizes the classical gradient dynamical system

(3) i(t) = —Vf(z(t), t>0, z(0)eR"
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In his pioneering work on real-analytic functions [16, 17], Lojasiewicz provided the
main ingredient—namely, (1)—that allows us to derive the convergence of all bounded
trajectories of (3) to critical points. As can be seen from a counterexample due to Palis
and De Melo [19, p. 14], the set of cluster points of a bounded trajectory generated by
the gradient of a C'*° function is, in general, far from being a singleton. Those famous
results illustrate the importance of gradient vector fields of functions satisfying the
Lojasiewicz inequality. An even more striking feature is that the trajectories converge
“in direction” when approaching critical points. This fact had been conjectured by
Thom (around 1972; see [22]) for real-analytic functions, and established by Kurdyka,
Mostowski, and Parusinski in [14]. The subanalytic generalized Thom conjecture
remains open even in the smooth case (see [13, Conjecture FJ).

In section 4 we extend Lojasiewicz results to a nonsmooth setting (f is a subana-
lytic proximal retract), by showing that all bounded trajectories have a finite length
(Theorem 4.5). We also provide estimates of the asymptotic convergence rate towards
the critical points (Theorem 4.7).

For related results on this topic, see [1]; for other applications to partial differen-
tial equations, see the works of Simon [21] and Haraux [12].

2. Preliminaries. The key ingredients for the nonsmooth extension of the Loja-
siewicz inequality are subanalyticity of the function f and notions of generalized
differentiation provided by variational analysis.

2.1. Subanalytic sets and stability properties. We recall the following def-
inition.

DEFINITION 2.1 (subanalyticity). (i) A subset A of R™ is called semianalytic
if each point of R™ admits a neighborhood V' for which ANV assumes the following
form:

UMz eV: fi@) =0,gi;(x) >0},

i=1j=1

where the functions fij, gij : V — R are real-analytic for all1 <i <p,1 <j<gq.
(ii) The set A is called subanalytic if each point of R™ admits a neighborhood V
such that

ANV ={z eR": (z,y) € B},

where B is a bounded semianalytic subset of R™ x R™ for some m > 1.

(iil) Given m,n € N*, a function f : R™ — RU{+o0} (respectively, a point-to-set
operator T' : R™ =% R™) is called subanalytic if its graph is a subanalytic subset of
R™ x R (respectively, of R™ x R™ ).

Recall that the graphs of f and T, denoted respectively by Gr f and GrT, are
defined by

Gr f:={(z,\) e R" xR: f(z) = A}, GrT :={(z,y) e R" xR™:y € T'(z)}.

Some of the elementary properties of subanalytic sets have been gathered below (see,
e.g., [4, 10, 18]):
— Subanalytic sets are closed under locally finite union and intersection. The
complement of a subanalytic set is subanalytic (Gabrielov theorem).
— If A is subanalytic, then so are its closure cl A, its interior int A, and its
boundary bd A.
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— Given a subanalytic set S, the distance dg(z) := inf {||z — a]| : @ € S} is a
subanalytic function.

— Path connectedness (see, e.g., [10, Facts 1.10-1.12]): Any subanalytic set
has a locally finite number of connected components. Each component is
subanalytic and subanalytically path connected; that is, every two points can
be joined by a continuous subanalytic path that lies entirely in the set.

— Clrve selection lemma (see, e.g., [4, Lemma 6.3]): If A is a subanalytic subset
of R™ and a € bd A, then there exists an analytic path z : (=1,1) — R”
satisfying z(0) = @ and z((0,1)) C A.

The image and the preimage of a subanalytic set are not in general subanalytic
sets. This is essentially due to the fact that the image of an unbounded subanalytic
set by a linear projection may fail to be subanalytic. Consider, for instance, the set
{(n%_l, n) : n € N}, whose projection onto R x {0} is not subanalytic at 0.

To remedy to this lack of stability, let us introduce a stronger analytic-like notion
called global subanalyticity (see [10] and references therein).

For each n € N, set C,, = (—1,1)" and define 7,, by

Tn(.’L'l,...7£L'n):( i .. In >6Cn.

T+227 " 1+a2

DEFINITION 2.2 (global subanalyticity; see, e.g., [10, p. 506]). (i) A subset S of
R™ is called globally subanalytic if its image under T, is a subanalytic subset of R™.

(ii) An extended-real-valued function (respectively, a multivalued mapping) is called
globally subanalytic if its graph is globally subanalytic.

Globally subanalytic sets are subanalytic, and conversely any bounded subana-
lytic set is globally subanalytic. Typical examples of subanalytic sets which are not
globally subanalytic are the set of integers Z, the graph of the sinus function, the
spiral {(tcost,tsint) € R? : ¢ > 0}, etc. The class of semialgebraic sets (e.g., [3, 8])
provides an important subclass of globally subanalytic sets. Recall that a set A C R™
is called semialgebraic if it assumes the following form:

A= U ﬂ{x eV fij(x) = 0,9:(x) > 0},

i=1j=1

where fi;,g;; : R®™ — R are polynomial functions for all 1 < i < p,1 < j < q.
(Readers who are unfamiliar with subanalytic geometry might in a first reading replace
“subanalytic” and “globally subanalytic” by “semialgebraic” in the statements that
follow.)

A major fact concerning the class of globally subanalytic sets is its stability under
linear projections.

THEOREM 2.3 (projection theorem; see, e.g., [10, Example 4, p. 505]). Let
O(z1,...,Tnt1) = (1,...,7,) be the canonical projection from R onto R™. If
S is a globally subanalytic subset of R" 1, then so is II(S) in R™.

Among the numerous consequences of the above result in terms of stability, the
following properties are crucial to our main results:

— The image or the preimage of a globally subanalytic set by a globally sub-
analytic function (respectively, globally subanalytic multivalued operator) is
globally subanalytic (see, e.g., [10, p. 504]).

— Monotonicity lemma (e.g., [10, Fact 4.1]): Takea < SinR. If ¢ : (o, 8) = R
is a globally subanalytic function, then there is a partition ¢y = o < t; <
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oo < tyq = B of (@, ) such that o|g, .,y is C°° and either constant or
strictly monotone, for i € {0,...,l}. Moreover ([13], e.g.), ¢ admits a Puiseux
development at t = «; that is, there exists 6 > 0, a positive integer k, [ € Z,
and {ay}n> C R such that

(t) = Zan(t —a)F forallt e (o, a+6).

n>l

— Lojasiewicz factorization lemma (e.g., [4, Theorem 6.4]): Let K C R™ be a
compact set and f,g : K — R two continuous (globally) subanalytic func-
tions. If f~1(0) € g~1(0), then there exist ¢ > 0 and a positive integer r such
that |g(z)|" < c|f(x)| for all x € K.

2.2. Notions from nonsmooth analysis and further stability results.
Throughout this paper, we essentially deal with nondifferentiable functions defined on
R™ with values in RU {+o00}. We denote by dom f the domain of the function, that
is, the subset of R™ on which f is finite. In a similar way, the domain of a point-to-set
operator T' : R™ =% R", denoted by dom T, is defined as the subset of R™ on which T’
is nonempty. The epigraph and the strict epigraph of f are respectively defined by

epl f:={(z,\) eR" xR: A > f(x)}, epiy f:={(z,\) e R" xR: A > f(z)},

while the epigraphical sum of two extended-real-valued functions f,g : R — R U
{+o0} is the function defined by

R" 3 uvr— h(u) = inf {f(v) + g(v—u):v € R} € [—00, +00].

The terminology stems from the fact that the strict epigraph of h is the Minkowski
sum of the strict epigraphs of f and g.

Even if f : R” — R U {400} is subanalytic, its domain and its epigraph may fail
to be subanalytic sets.

Ezample 2.4. Consider the function f: R — R U {400} whose graph is given by
the set S := {(1,n)}. Then the domain of f is not subanalytic, whereas its graph is.
If g: R — RU {400} has =S := {(—1,—n) : n € N} as its graph, both its domain
and epigraph are not subanalytic.

Additional geometrical properties like convexity are also not sufficient to obtain
regularity on the domain. This is shown in the example below.

Ezample 2.5. Let {g,}n>1 be an enumeration of the rationals {g,}, and define
h:R? — RU{+o0} in polar coordinates by

0 ifrelol),
h(r,0) =< n if r =1 and 6 = g, (mod 27),
+00  otherwise.

Then h is convex and subanalytic, but its domain is not subanalytic.

As expected, such a behavior can be avoided by requiring the function to be glob-
ally subanalytic. The following two results are basic consequences of the projection
theorem.

PROPOSITION 2.6. Let f : R™ — RU {+o0} be a globally subanalytic function.
Then the domain, the epigraph, and the strict epigraph of f are globally subanalytic
sets.
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PROPOSITION 2.7. Let f : R™ — R U {400} be a subanalytic function which is
relatively bounded on its domain; that is, {f(x) : © € dom fN B} is bounded for every
bounded subset B of R™. Then the domain, the epigraph, and the strict epigraph of f
are subanalytic sets.

Remark 2.8. Observe that Propositions 2.6 and 2.7 involve distinct assumptions
and provide different results. This can be seen by considering, for instance, the
subanalytic functions f(z) = 2= with dom f = (0, +occ) and g := 6 .

The case for which functions under consideration are convex but not necessarily
continuous requires more attention.

PROPOSITION 2.9. Let f : R — RU {400} be a lower semicontinuous convex
and subanalytic function such that infg~ f € R. Define h : R — RU {400} as the
epigraphical sum of [ and the square function %H -||?, that is,

h(zx) :inf{f(u) + %Hx—uHQ ‘U ER”}, z € R™

Then h is a C subanalytic function.

Proof. The proof consists mainly of showing that the epigraphical sum of a
convex function with a coercive function is a “graphically local” operation. The
fact that h takes finite values and is a C! function is a classical result (see [20], for
example). Therefore it suffices to prove that h + ép is subanalytic for every bounded
subset B of R™. Let us fix some nonempty bounded set B of R", and let us set
M = sup{h(z) : € B}. Thanks to the continuity of h we have M < +o0.

The infimum in the definition of h(z) is always attained at a unique point denoted
J(x), and the mapping J : R" — R"™ so defined is a nonexpansive mapping (see [6]).
Moreover, the function f is bounded on the bounded set J(B). Indeed, if u = J(b)
for some b € B, the definition of J implies that

f(u) = f(J (b)) = h(b) — %Ilb* T < M.

Let C be some ball containing the bounded set J(B), and let fM : R — RU{+o00}
be the function whose graph is given by Gr f N (C X [infg~ f, M]). By definition the
function f™ has a bounded subanalytic graph, and it is therefore globally subanalytic.
According to the above considerations the values of h on B coincide with those of the
function

A 1
h(z) := inf {fM(u) + §||$—u\|2 Tu € R”}, z € R™.

The strict epigraph of h is the sum of the strict epigraphs of the bounded sub-
analytic function fM and the square function u + %|lz — u||*> (which is globally

subanalytic for it is semialgebraic). This yields that h (and consequently h + 6p) is
globally subanalytic; hence h is subanalytic. 0

The notion of subdifferential—that is, an appropriate multivalued operator play-
ing the role of the usual gradient mapping—is crucial for our considerations. In what
follows we denote by (-, -) the usual Euclidean product of R™.

DEFINITION 2.10 (subdifferential; see, e.g., [20, Definition 8.3]). (i) The Fréchet
subdifferential éf(w) of a lower semicontinuous function f at x € R™ is given by

f (z) = {m* €R": liminf fy) = (@) = @y = ) > 0}

y—z,y#e |y — ||

whenever x € dom f, and by (:)f(x) = 0 otherwise.



THE LOJASIEWICZ INEQUALITY 1211

(ii) The limiting subdifferential at x € R™, denoted by Of(x), is the set of all clus-
ter points of sequences {x%}p>1 such that ¥ € Of (z,) and (zn, f(xn)) — (z, f(z))
as n — +00.

If the function f is of class C'!, the above notion coincides with the usual concept
of gradient; that is, f(z) = 0f(z) = {Vf(z)}. For a general lower semicontinuous
function, the limiting subdifferential O f (z) (thus, a fortiori the Fréchet subdifferential
af (z)) can possibly be empty at several points © € dom f. Nevertheless (see, e.g.,
[20, Chapter 8]), both the domain of §f and (a fortiori) the domain of df are dense
in the domain of f.

Using the limiting subdifferential df, we define the nonsmooth slope of f by

(4) my(x) = inf{||z*| : 2" € Of(x)}.

By definition, ms(z) = 400 whenever df(x) = 0.

Let us recall that if f is continuous, the operator df : R™ = R™ has a closed
graph. This is also the case for a lower semicontinuous convex function, where both
df(x) and of (z) coincide with the classical subdifferential of convex analysis; that is,

(5)  Of(z) =0f(x) = {z* € R™: f(-) — («*,-) has a global minimum at z} .

We are ready to state the notion of generalized critical point (in the sense of variational
analysis).

DEFINITION 2.11 (critical point). A point a € R™ is said to be a (generalized)
critical point of the function f: R™ — R U {400} if it belongs to the set

crit f:={z €R": 0€9f(x)}.

Remark 2.12. If f is lower semicontinuous convex or if dom f is closed and
f ldomy is continuous, then the graph of Jf is closed, which implies that the set crit f
of the critical points of f is closed. In that case, let us also observe that the slope
my(x) is a lower semicontinuous function, and that

crit f = mj?l(O).

The following result illustrates further the properties of stability of subanalytic
sets recalled in subsections 2.1 and 2.2.

PROPOSITION 2.13. Let f be an extended-real-valued function.

(i) If f is globally subanalytic, then the operators éf and Of, the function my,
and the set crit f are globally subanalytic.

(ii) If f is subanalytic and relatively bounded on its domain, then the operators
3f and Of, the function my, and the set crit f are subanalytic.

Proof. The local nature of the Fréchet and the limiting subdifferential allows us
to restrict our proof to the globally subanalytic function fp := f + 65, where B is
some nontrivial ball. It suffices therefore to establish (i).

Thanks to the projection theorem (Theorem 2.3), the proof becomes a rou-
tine application of [8, Theorem 1.13], which asserts that if ®(xq,...,2,) is a first
order formula (in the language of the subanalytic structure of R™), then the set
{(z1,...,2,) € R™ : ®(xq,...,2,)} is definable, or in other words, it belongs to
the structure.!

LGlobal subanalytic sets form a model-complete first order theory. In fact, whether or not a
structure is “model complete” depends only on the theory of the structure, that is, the set of the
sentences (i.e., quantifier-free formulas) of its language which are true in this theory. We refer to [23,
p- 1052] for more details.
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As an illustration of this standard technique, let us prove that the operator d f:
R™ = R" is globally subanalytic. To this end, set A = epif, I' = Grf, and D =
dom f, which are all globally subanalytic sets. According to Definition 2.10(ii) the
graph Grdf of the Fréchet subdifferential §f(z) is the set of (z,z*) € R™ x R™ such
that

V€>O,35>O,V(y,ﬂ) € (B(:L',&) XR)ﬁAé (I757<I*,y7f£>+€Hy*IEH) GAa

where B(z,8) denotes the open ball of center z and radius § > 0. Since the above
first order formula involves only globally subanalytic sets (namely, the subanalytic
sets B(z,6),R, and A), it follows that Grdf is subanalytic.

Subanalyticity of the graphs of the operator df and of the function m¢ can be
proved similarly. Finally, crit f being the inverse image of (the subanalytic set) {0}
by my, it is a subanalytic set. |

Similarly one obtains the following corollary.

COROLLARY 2.14. Under the assumptions of Proposition 2.13(ii), the restrictions
of the multivalued mappings éf, Of, and of the slope function my to any bounded
subanalytic subset of R™ are globally subanalytic.

Remark 2.15. The assumptions (and consequently the results) of the statements
(i) and (ii) of Proposition 2.13 are of different natures. For example, let us consider
the lower semicontinuous convex function f : R? — R U {400}, defined by

22y ify >0,

flz,y) = 0 ifx=y=0,
+o0o  elsewhere.

Then Proposition 2.13(i) applies, but not (ii), since f is not relatively bounded on
dom f.

3. Main results.

3.1. The Lojasiewicz inequality for subanalytic continuous functions.
Assuming f subanalytic, and having a closed domain relative to which it is continuous,
the set crit f is closed (Remark 2.12) and subanalytic (Proposition 2.13), so it has
a locally finite number of connected components (see subsection 2.1). For any a in
crit f, let us denote by (crit f), the connected component of crit f containing a. In
[5, Theorem 13] it has been established that

(6) f is constant on (crit f),, .

The proof of (6) relies on a fundamental structural result about subanalytic functions
(stratification) and on the Pawlucki generalization of the Puiseux lemma; see [5].
Nevertheless, (6) can be easily proved for continuous functions that also satisfy

(7) df(x) = 8f(x) for all z € R".

Indeed, given z and y in some connected component S; of crit f, we consider the
continuous subanalytic path z : [0,1] — S; with 2(0) = z and 2z(1) = y, and the
subanalytic function h(t) = (f o z)(t) (see subsection 2.1). Since 0 € df(z(t)) for
all t € [0,1], from the “monotonicity lemma” and the chain rule for the Fréchet
subdifferential [20, Theorem 10.6] we get h'(t) = 0 for almost all ¢. It follows that h
is constant on [0, 1], whence f(x) = f(y).
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Examples of continuous functions that satisfy (7) are C! functions (for which
df(z) = 0f(x) = {Vf(z)}), proximal retracts (or lower-C? functions; see [20, Defi-
nition 10.29] and section 4), or more generally subdifferentially regular functions [20,
Definition 7.25].

The main result of subsection 3.1 can now be stated as follows.

THEOREM 3.1. Let f : R — RU {400} be a subanalytic function with closed
domain, and assume that f |dqomy is continuous. Let a € R™ be a critical point of f.
Then there exists an exponent 6 € [0,1) such that the function
(8) |f B f(a)|0

my
is bounded around a.

Note that we have adopted here the following conventions: 0° = 1 and co/c0 =
0/0=0.

Proof. Let us set S = crit f and S, = (crit f),. Replacing if necessary f by
g(x) = f(z) — f(a), there is no loss of generality to assume f(a) = 0, so that (6)
implies S, C f71(0).

We may also assume that f is globally subanalytic and that the set S, is com-
pact. Indeed, if this is not the case, then we replace the function f by the glob-
ally subanalytic function g defined (for some R > 0) by g(z) = f(x) + d5(4,r) (),
where 0p(,,z) denotes the indicator function of the closed ball B(a,R). Then g has
a closed domain relative to which it is continuous, a is a critical point for g, and
(critg), N B(a, R) = Sq N B(a, R). Establishing (8) for f is thus the equivalent of
doing so for the globally subanalytic function g.

It is also sufficient to establish separately that the function z — [m f(ZE)]_l |f(x)
is bounded when z varies inside the subanalytic set f~1((0, +oc]), and subsequently
to do the same when z varies in f~!((—o0,0]). Since this latter assertion will follow by
reproducing essentially the same arguments, we may assume with no loss of generality
that f > 0.

Let us choose A > 0 so that the compact set U = {x € R" : dg, (z) < A}Ndom f
separates S, from the other connected components of S. Note that U is a globally
subanalytic set (see subsection 2.1). We claim that for all Z in the boundary of S, we
have

| 0

(9) lim
Loy, my ()

If the above limit were not zero, there would exist a sequence {(xp,z;)} in Gr df and

r >0 with 2, — & as p — +oc and such that f(x,) > r||z;|| > 0 for all p. By the

definition of the limiting subdifferential there exists a sequence (y,,y,;) € Gr df such

that f(y,) > r|lyyl| > 0, where y, converges to . This proves that for some r > 0

the point Z belongs to the closure of the set

F={xecU\S,: " e df(x), f(x) >r|z*] >0}.

Owing to Proposition 2.13 (i) the latter set is globally subanalytic, so by the “curve
selection lemma” (subsection 2.1) there exists an analytic curve z : (—1,1) — R"
with 2(0) = Z and 2((0,1)) C F. Hence for all small ¢ > 0 there exists a nonzero
subgradient z*(t) € df(2(t)) satisfying

(10) f(@) > 250 > 0.
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Thanks to the continuity of f |d4oms at Z = z(0) the subanalytic function
[0,1) 3= h(t) = (f o 2)()

is continuous at ¢t = 0, and (6) implies that A(0) = f(Z) = 0. Applying the “mono-
tonicity lemma” (subsection 2.1) to the globally subanalytic function ~ and the chain
rule calculus for the Fréchet subdifferential [20, Theorem 10.6], we get for ¢ small
enough that |h/(t)] < M ||z*(t)||, where M = max {||2(¢)|| : ¢t € (—=1/2,1/2)}. Then
by applying (10), it follows that

h(t)

— > rM'>0 for all small ¢ > 0.
[ (t) |

(11)
Considering the Puiseux development of h around ¢ = 0 (see subsection 2.1), we
conclude that for some positive rational ¢ and some ¢ > 0 we have h(t) = ct? + o(t?)
for all small ¢ > 0. By differentiating the Puiseux development of h at ¢ = 0 and
substituting into (11), we obtain a contradiction.

Let us now establish (8). To this end, let us consider the globally subanalytic
function

o) =inf {mp(z): € UNF 1)} ifteRy.

Clearly ¢(0) = 0, while from the definition of U, it ensues that 0 < ¢(t) < 400 for
all small ¢ > 0. If for every 6 > 0 the function ¢ assumes at least one infinite value in
the interval (0, 6), then the subanalyticity of dom ¢ guarantees that 0 is an isolated
point in dom . In this case (8) holds trivially. We may thus assume that ¢ is finite
around 0. Evoking again the “monotonicity lemma” (subsection 2.1), we deduce that

=1 € |0, .
Jm g € [0, +o0]

In case | # 0, equation (8) follows easily (with § = 0), so we may assume [ = 0 and ¢
continuous. In this case, we consider the Puiseux expansion of ¢, which has the form

“+o0
o(t) =Y antt for all small ¢ > 0,
n=0
where k is a positive integer. Let ng € N* be the first integer such that a,, # 0, and
let us set n = 42. Then
(12) o(t) = b + o(t"),

where ¢ := an, > 0. Unless (8) holds trivially, we may assume by (6) that there exists
a sequence {z,}, C UN\JS, such that z, — a, ms(z,) — 0, and f(z,) > 0. Let us
consider the globally subanalytic set

A ={z € UNSa:my(z) = ¢(f(2)), f(z) =0} # 0.
We claim that
(13) clANS, #0.

Indeed, if (13) were not true, then by a standard compactness argument, there
would exist an open neighborhood V' around S, such that S, C V. Nndom f C U
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and ANV = (. Setting t, = f(z,) (for the sequence {z,}, mentioned above)
and considering y, € U such that ms(y,) = ¢(t,) (by Remark 2.12, my is lower
semicontinuous) and f(y,) = t,, we would obtain {y,}, C U\V. By compactness,
we could then assume that y, — y € U\V, which would yield (by continuity of ¢)
that my(y) = 0, that is, y € S,, and a contradiction follows.

Thus (13) holds, and there exists an analytic curve z : (—1,1) — R™ with 2(0) :=
b e S, and 2((0,1)) € A. As s N\, 0 we get (by continuity of f and ¢) that
f(2(s)) — 0 and ms(z(s)) = ¢(f(2(s))) — 0. We deduce from (12) that

my(z(s)) = e(f(2(5)))" +o((f(2(5))"),

so (9) implies that n < 1. Take 6 € (n,1) and apply (12) to obtain the existence of
to > 0 such that ¢(t) > ct? for all t € [0,#). By using the continuity of f |dqom s at
a, it follows that there exists u > 0 such that |f(x)| < o for all x € dom f N B(a, p).
Finally, to obtain (8), we simply observe that

my(x) > o(f(x)) > cf(x)? for all x € B(a, ).

The proof is complete. ]

Remark 3.2. Let us note that (8) still holds around any point a € dom f\crit f.
Indeed, if @ ¢ crit f, then m¢(z) is bounded below away from 0 in a neighborhood of a,
so (8) follows from the continuity of f. In this case, the assumption of subanalyticity
is obviously not needed.

3.2. The Lojasiewicz inequality for subanalytic lower semicontinuous
convex functions. In this subsection we are interested in lower semicontinuous con-
vex subanalytic functions f : R” — R U {400} which are somewhere finite, that is,
convex functions for which dom f # ). In this case, in view of (5), the set of critical
points crit f is closed and convex and coincides with the set of minimizers of f.

Before proceeding let us recall classical facts from convex analysis (e.g., [20]).
Let us denote by g the epigraphical sum of f and %H - |I? (see Proposition 2.9). The
function ¢ : R® — R is finite-valued, and C' and enjoys the following properties:

(a) g <.

(b) The set of critical points of g is exactly the set of critical points of f.

(¢) The infimum values of f and g coincide; i.e., infgn f = infgn g.

The properties of g are related to the so-called Moreau regularizing process; for
more details and further results, see [20].

We are ready to state the main result of this subsection.

THEOREM 3.3. Let f : R® — R U {400} be a lower semicontinuous convex
subanalytic function with crit f # (). For any bounded set K there exists an exponent
0 €[0,1) such that the function

|f = min f°

(14)
mpy

is bounded on K.

Proof. By Proposition 2.9, the function g defined above is subanalytic and con-
tinuous. Applying (b) and the results of the preceding section, we see that S := crit f
is subanalytic. Let us show how g may be used to derive a growth condition for f.
For any x € K, the equivalence

ds(z) =0 <= |g(x) —ming| = 0,
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combined with the Lojasiewicz factorization lemma (subsection 2.1) for the continuous
subanalytic functions |g — min g| and dg (restricted to the bounded set K), yields the
existence of r > 1 and ¢ > 0 such that

c [ds(x)]"” < |g(z) — ming| for all x € K.
On the other hand, the properties (a), (b), (¢) of g imply that
|f(2) — min f| > |g(z) — ming] for all = € R”,
so that
(15) [ds(@)] < ¢ /7 |f(w) — min fI7.
Moreover, since f is convex we get for all @ in S and all (z,2*) € Grdf
fla) = f(z) + (&% a - x).

Thus for all (z,2*) € Grof it follows that |f(x) — f(a)] < ||z*|| ||z — al|, and by
taking the infimum over all a € S, we obtain

(16) [f(z) —min f| < [lz"] ds(z).
We therefore deduce from (15) that for all z € K and all (x,2*) € Grdf
[f@) = min f| < ™" o - |f(2) - min f[*/7.

By setting §# = 1 — 7~ 1, the latter inequality implies |f(z) — min f|® < ¢~ /" my(x)
for all z € K, and (14) follows. O

Remark 3.4. The lower semicontinuous convex function f considered in Remark
2.15 provides an example where Theorem 3.3 applies while Theorem 3.1 does not.

Remark 3.5. A careful examination of the proof of Theorem 3.3 shows that the
important assumption is not subanalyticity of the function, but rather the growth
condition near critical values that subanalyticity implies. Indeed, let K be a compact
set and f be any lower semicontinuous convex function f that satisfies

(17) |f(z) —min f| > cdg(z)" for all x € K,

where ¢ > 0, r > 1 and with S = crit f # (). The argument of Theorem 3.3 may be
then slightly modified in order to derive a Lojasiewicz inequality around any critical
point a belonging to the interior of K.

Remark 3.6. From relation (16), which is true for all lower semicontinuous convex
functions, a weaker version of (14) can be deduced. Indeed, if f is convex (but not
necessarily subanalytic), then the function

|f — min f|

mg

is bounded around any critical point of f.
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Remark 3.7. By using elementary arguments it can be shown that f satisfies the
Lojasiewicz inequality around any point a € dom f (cf. Remark 3.2).

4. Applications to dynamical systems. Throughout this section, unless
otherwise stated, we make the following assumptions:

(H1) f is either lower semicontinuous convex or lower-C? with dom f = R”".
(H2) f is somewhere finite (dom f # @) and bounded from below.

We recall (see [20, Definition 10.29], for example) that a function f is called
lower-C? if for every zo € dom f there exist a neighborhood U of zg, a compact
topological space S, and a jointly continuous function F' : U x S — R satisfying
f(z) = maxseg F(z,s) for all x € U and such that the (partial) derivatives V,F(-,-)
and V2F(-,-) exist and are jointly continuous.

A lower-C? function f is locally Lipschitz and locally representable as a difference
of a convex continuous and a convex quadratic function [20, Theorem 10.33]. In
particular, it satisfies

(18) of = bf.

Note that (18) is also true for a lower semicontinuous convex function (see relation
(5))-

As mentioned in the introduction, an important motivation for establishing the
Lojasiewicz inequality for classes of nonsmooth functions is the expected asymptotic
properties of the corresponding subgradient dynamical systems. This latter term
refers to differential inclusions of the form

() + 0f(x(t)) 30,

where 0f : R® = R"™ is the limiting subdifferential of f. A trajectory of the above
dynamical system is any absolutely continuous curve z : [0,7) — R™ that satisfies

. &(t)+0f(x(t)) >0 a.e. on (0,7,
g
Of(x(t)) # 0 for allt € [0,T),

where the notation “a.e.” stands for “almost everywhere” in the sense of the Lebesgue
measure of R. Let us also recall that an absolutely continuous function (or curve) z(t)
is a.e. differentiable and can be entirely determined, up to a constant, by integration
of its classical derivative. A trajectory z(t) is called mawzimal if there is no possible
extension of its domain compatible with (G).

The following existence-uniqueness result is known to hold (see [6, Theorem 3.2,
p.57] or [2, Chapter 3.4] for the convex case, and [6, Proposition 3.12, p. 106] for the
convex case with Lipschitz perturbation; see also [9] for related work).

Ezistence of trajectories. Under the assumptions (H1) and (H2), for every zq €
R™ such that df(xg) # 0, there exists a unique trajectory z : [0,7) — R™ of (G)
satisfying

(7) z(0) = zo.

In addition, the function h := f o x is absolutely continuous.
Let us now recall some classical consequences of (18) and of the above existence
result. For the sake of completeness, some elementary proofs are provided.
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COROLLARY 4.1. Let x : [0,T) — R™ be a trajectory of (G) satisfying (T).
(i) For almost all t € (0,T)

%(f ox)(t) = (&(t),z*) for all x* € Of (x(t)).

(ii) For almost allt € (0,T), the function x* > (&(t),z*) is constant on O f(x(t)).

(iii) The trajectory x can be extended to a mazimal trajectory & € WH2(Ry ; R™).

Proof. Set h = f o x and note that the absolutely continuous functions h and
x are simultaneously differentiable on (0,7)\ XV, where N is a set of measure zero.
Let t € (0,T)\N. Since z(t) € domdf and df(z(t)) = df(x(t)), one may adapt the
ideas of [6, Lemma 3.3, p. 73] (chain rule) to obtain

oh(t) = (W(0)} = { 5 o))} = (400 ). o* € Df (0}

Thus (i) and (ii) follow.
To establish (iii) let us first prove that € W2 ((0,T); R™). Thanks to (G), we
deduce from (i) that

d 2
%(f ox)(t) = —|z(t)|* for all (0,T).

Hence f is a Lyapunov function of the dynamical system (G), and

/0 lé(8)|2dt = (o) — f((T)) < +oc;

that is, & € L2((0,7); R"). Note that #(t) remains bounded as ¢ converges to T'. (For
a lower semicontinuous convex function f this is a classical result (see [2, p.147], for
example); if f is lower-C?, this follows from (G) and the fact that df is locally bounded
around 7T'.) Since the graph of df is closed (Remark2.12) we get (T) € domdf.
Thus, thanks to the existence result (7), the initial trajectory is in fact extendible to
a semiopen interval [0, T+ ), for some § > 0, containing [0, T]. A standard argument
shows that the maximal extension of z(t) is defined in (0, +00). O

An interesting hidden property of (G) is the following.

COROLLARY 4.2. Let x be a mazximal trajectory of (G) satisfying (T ). Then for
almost all t € Ry

@) = my(z(t))  and %(f o z)(t) = — [my(x(t))]*.
Proof. From (G), we obtain the existence of a curve t — g¢(t) € df(z(t)) such that
z(t) = —g(t) a.e. on R,.
Combining this with Corollary 4.1(ii), we get that for almost all ¢ in R
lg(t)I12 = {g(t), &%) for all 2 € D (x(t)),

which yields via a standard argument that ||g(¢)|| = m(z(t)). Now evoking Corollary
4.1(i) finishes the proof. d

Remark 4.3. Corollary 4.2 says that the trajectories of (G) (the existence of which
is guaranteed under the assumptions (H1) and (H2)) are necessarily “slow solutions”
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(see [2, p. 139]) of the differential inclusion (G). In particular, if the trajectory z(t)
meets a critical point of f, that is, if there exists ¢y > 0 such that ms(x(to)) = 0,
then Corollary 4.2 guarantees that the trajectory stops there; that is, z(t) = z(to) for
all ¢ > . In this case, the trajectory has a finite length equal to foto l£(s)||ds.

Another consequence of Corollary 4.2 is that (G) defines a descent method in
the sense that f decreases along any trajectory. Although compactness implies that
bounded trajectories have at least one cluster point as ¢ — +o0o, those might not
converge towards one of them—and a fortiori, have an infinite length. The next
result shows that this cannot happen if f is assumed subanalytic (or more generally,
if f satisfies the Lojasiewicz inequality). Indeed, via a “Lojasiewicz-type” argument
(e.g., [14]) we establish successively that the tail of the trajectory is trapped inside
a convenient ball of its cluster point, that this tail necessarily has a finite length,
and finally that the trajectory converges to this cluster point. In the remainder, in
addition to (H1) and (H2), the following is also assumed:

(H3)  fis a subanalytic function.

Let us give some examples of subanalytic functions related with optimization
problems.

Ezample 4.4. - (supremum operations) Let g : R® x RP — R be an analytic
function, and let K be a compact subanalytic subset of RP. Then

f(x) = sup g(z,y)
yeK

is a lower-C? subanalytic function (see [4], for example). If in addition = — g(z,y) is
convex for all y, then f is convex.

- (constraints sets) Let g; : R® — R,i € {1,...,m}, be a family of analytic
functions. The feasible set

C:={zeR":g(x) <0,Vie{l,...,m}}

together with its indicator function are subanalytic objects.

- (Barrier and penalty functions) Those can be used to minimize convex functions
via parametric versions of (G). Typical examples on R are the functions hy : © > 0 —
xP(p>1), hg:x >0+ —z¥ (ve (1)), hs(x) = 2% if z <0 and hz(x) =0
otherwise.

We are now ready to state the following result.

THEOREM 4.5. Assume that a function f satisfies (H1)—(H3). Then any bounded
mazimal trajectory of (G) has a finite length and converges to some critical point of
I

Proof. Let {x(t)}+>0 be a bounded maximal trajectory of (G). By Corollary 4.1,
the trajectory is defined over all R;. Using (H2) and Corollary 4.2(iii), we conclude
that there exists 8 € R such that lim;, ;o f(2(t)) = 8. Replacing f by f — 3 and
using the basic rules of subdifferential calculus, we may assume that g = 0.

In view of Remark 4.3, we may also assume that f(z(¢t)) # 0 for all ¢ > 0.
Consequently, the function t — (f o x)(¢) is positive and strictly decreasing to 0 as
t — 400. Moreover, by compactness, there exists some cluster point a € R™ for the
trajectory x(t). So there exists an increasing sequence (t,)n>1 with ¢, — 400 such
that

(19) lim z(t,) = a.

typ——+00
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By continuity of (f o x) we deduce that f(a) = 0. Using (7), (19), and the fact
that Jf has a closed graph (see Remark 2.12), we deduce that a € domdf. We do
not know yet whether a is critical or not, but nevertheless, the Lojasiewicz inequality
holds around a. Indeed, if a € crit f, then use Theorem 3.1 or Theorem 3.3, and if
a ¢ crit f, then just recall Remarks 3.2 and 3.7. It follows that there exist ¢ > 0,
6 €[0,1), and € > 0 (defining an open neighborhood B(a,¢) of a) such that

(20) |f(x)|” < emyp(x) for all x € B(a,¢).

Let us consider the (positive, absolutely continuous) function h=(fox)~% Since
x(t) — a and since the function h is strictly decreasing and converges to 0 (as t —
+00), there exists tg > 0 such that for all ¢ > tg

(21) W <,

with

(22) J(to) = all < <.

Let us set

(23) T, :=inf {t > to, 2(t) ¢ B(a,e) }.

By continuity of the trajectory we have tqg < T,,, < 4o00.
Claim T,,, = +oo (that is, the tail of the trajectory remains trapped in B(a,¢)).
Proof of the claim. For almost all ¢ € [tg, T,,.) we have

- . d
Zh(t) = (1-6) f(x(1)) o S (fen)(®)

—(1=0) F@(®)™° [my((t)]
< —(1—0) ¢ my(x(t),

IN

where we have successively used Corollary 4.2 and (20). By integration, we obtain for
all t € [to, Tout)

(24) | mstatods < - [W] 7

which according to (21) and Corollary 4.2, yields

t

(25) 1&:(s)[|ds <

< forallte [to, Tous)-
to 3

To see that T,,, = +oo, we just argue by contradiction. If T, < 400, then using

(22) and (25), we obtain
Tout
(m(to) + /f |x(s)||ds> —a

The latter obviously contradicts (23). Thus T, = +0o, and the claim is proved.

2¢e
< =,

T..) —al <
|#(Tow) — all < -
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Resorting to (25) again, we conclude that ftj)roo lZ(s)|lds < 5, so x(t) has a finite
length and hence converges. Thus limy_.4o z(t) = a, and my(z(t)) admits 0 as a
limit point. By using the closedness of Grdf, we conclude that a is a critical point
of f. d

Remark 4.6 (generalized gradient conjecture).  The “gradient conjecture” of
Thom [22] can obviously be reformulated in this nonsmooth setting. For any bounded
trajectory z(-) of (G), let us set zo := limy—, oo x(t). Is it true that

_ z(t) — Too
[|2(t) — ool

has a limit as ¢ goes to infinity? For real-analytic functions this conjecture has been
proved by Kurdyka, Mostowski, and Parusiriski [14].
Before we proceed to an estimate of the rate of convergence, let us introduce some
terminology.
e We define

+o0
(26) o(t) = / |l£(s)||ds for all t € Ry
t

to be the tail length function for the trajectory x(t).
o A Lojasiewicz exponent of the function f at a point a € R™ of its domain is
any number 6 € [0,1) for which the Lojasiewicz inequality holds around a.
Let us finally point out some facts arising from the proof of Theorem 4.5. Replac-
ing h(t) by [f(z(t)]'? and my(x(s)) by ||Z(s)| (see Corollary 4.2) in (24) and letting
t — 400, we deduce

oo ¢ 1-0
[&(s)llds < —— f(x(to)) "
/tg (1-0)
The above inequality remains true for every t > ¢, (in view of the Claim). Thus
assuming # > 0 and evoking again (20) and Corollary 4.2, we obtain (for k = ¢'/9)

+Oo 1—6
(27) / [2(s)||ds < _k_ lz(t)]| for all t > t,.
t (1-0)

We are now ready to state the following result.

THEOREM 4.7. Under the assumptions (H1)—(H3), let z(t) be a bounded mazimal
trajectory of (G). Then x(t) converges to some critical point a € R™ of f. Let 6 € [0,1)
be a Lojasiewicz exponent at this point. Then there exist k > 0, k' > 0, and to > 0
such that for all t > ty the following estimates hold:

~ If6 € (3,1), then |a(t) — al| < k(t + 1)~z 1),
— If6 =3, then ||2(t) — a|| < kexp(—k't).
~ If6 €0,%), then x(t) converges in finite time.

Proof. We can always assume that 6 > 0. (If § = 0, we replace it by some
6’ € (0,1/2), and we proceed as below.)

Let U be a neighborhood of a in which the Lojasiewicz inequality holds. Since
x(t) converges to a there exists tg > 0 such that x(t) € U for every t > ty. In
particular, (27) holds. Let us now consider the tail length function o(t) defined in
(26). Note that

(28) [2(t) — all < o(?).
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Since 6 (t) = —||(s)]| for all ¢ > to, inequality (27) yields

k it
(29) o(t) < a-0 [—o®)] 7 .

Thus o(t) is an absolutely continuous function and satisfies the following differential
inequality:
6
(30) o(t) < —=L[o(t)]T™=¢ for all t > tg,
where L is a positive constant. To obtain the announced estimates it suffices to

solve the following differential equation—considering separately the cases 6 € (1/2,1),
60 =1/2,and 6 € (0,1/2):

§(t) = —L[y(t)] ™7 for all t > to,
(31)

y(to) = o(to)-

The announced estimates then follow from (28) and the fact that o(t) < y(¢) for all
t > to. (Indeed, if o(f) = y(f) for some ¢ > g, then a comparison of (30) and (31)
shows that ¢(t) < ¢(t).) The proof is complete. O

Remark 4.8. The results of this section can be generalized to a wider setting as
follows. Let f: R™ — R U {400} be a lower semicontinuous function complying with
the following requirements:

(i) dom f # () and &f = df.

(ii) either f is convex or f |domy is continuous.

(iii) f has the Lojasiewicz property; that is, property (8) holds around any critical

point.

If we assume in addition that, for all initial conditions xy € domdf, the dif-
ferential inclusion (G) has a (unique) global solution z such that f o x is absolutely
continuous, then both Theorems 4.5 and 4.7 can be extended in this wider setting.

Prominent examples of functions meeting the above-mentioned conditions are con-
tinuous subanalytic ¢-convex functions [9], or lower semicontinuous convex functions
satisfying some growth condition of the type (17).
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