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CLARKE SUBGRADIENTS OF STRATIFIABLE FUNCTIONS∗

JÉRÔME BOLTE† , ARIS DANIILIDIS‡ , ADRIAN LEWIS§ , AND MASAHIRO SHIOTA¶

Abstract. We establish the following result: If the graph of a lower semicontinuous real-
extended-valued function f : R

n → R ∪ {+∞} admits a Whitney stratification (so in particular if f
is a semialgebraic function), then the norm of the gradient of f at x ∈ dom f relative to the stratum
containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we
obtain a Morse–Sard type of theorem as well as a nonsmooth extension of the Kurdyka–�Lojasiewicz
inequality for functions definable in an arbitrary o-minimal structure. It is worthwhile pointing out
that, even in a smooth setting, this last result generalizes the one given in [K. Kurdyka, Ann. Inst.
Fourier (Grenoble), 48 (1998), pp. 769–783] by removing the boundedness assumption on the domain
of the function.
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1. Introduction. Nonsmoothness in optimization seldom occurs in an arbitrary
manner, but instead is often well-structured. Such structure can often be exploited
in sensitivity analysis and algorithm convergence: Examples include “amenability,”
“subsmoothness,” “prox-regularity” (see [32], for example), and more recently the
idea of a “partly smooth” function, where a naturally arising manifold M contains
the minimizer and the function is smooth along this manifold. We quote [24] for formal
definitions, examples, and more details. In the past two decades, several researchers
have tried to capture this intuitive idea in order to develop algorithms ensuring better
convergence results: See, for instance, the pioneer work [23] and also [26], [9] for recent
surveys.

In this work we shall be interested in a particular class of well-structured (nons-
mooth) functions, namely, functions admitting a Whitney stratification (see section 2
for definitions). Since this class contains in particular the semialgebraic and the sub-
analytic functions (more generally, functions that are definable in some o-minimal
structure over R), the derived results can directly be applied in several concrete opti-
mization problems involving such structures. Our central idea is to relate derivative
ideas from two distinct mathematical sources: Variational analysis and differential ge-
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ometry. Specifically, we derive a lower bound on the norms of Clarke subgradients at
a given point in terms of the “Riemannian” gradient with respect to the stratum con-
taining that point. This is a direct consequence of the “projection formula” given in
Proposition 4 and has as corollaries a Morse–Sard type of theorem for Clarke critical
points of lower semicontinuous Whitney stratifiable functions (Corollary 5(ii)) as well
as a global nonsmooth version of the Kurdyka–�Lojasiewicz inequality—which is hereby
extended to unbounded domains; see Theorem 11—for lower semicontinuous definable
functions (Theorem 14 and Corollary 15). Although these results seem natural, anal-
ogous ones fail for the (broader) convex-stable subdifferential (introduced and studied
in [4]), unless f is assumed to be locally Lipschitz continuous; see Remark 8 and [3].

Theorems of the Morse–Sard type are central in many areas of analysis, typically
describing the size of the set of ill-posed problem instances in a given class. Classical
results deal with smooth functions [33], [22], but recent advances deal with a variety
of nonsmooth settings [3], [13], [14], [15].

A further long-term motivation of this work is to understand the convergence of
minimization algorithms. As one example, in order to treat nonconvex (and non-
smooth) minimization problems, the authors of [4] introduced an algorithm called
the “gradient sampling algorithm.” The idea behind this algorithm was to sample
gradients of nearby points of the current iterate and to produce the next iterate by
following the vector of minimum norm in the convex hull generated by the sampled
negative gradients. In the case that the function is locally Lipschitz, the above method
can be viewed as a kind of ε-Clarke subgradient algorithm for which both theoretical
and numerical results are quite satisfactory; see [4]. The convergence of the whole
sequence of iterates remains, however, an open question, and this is also the case for
many classical subgradient methods for nonconvex minimization; see [19]. We hope
that, just as in the smooth case, the nonsmooth �Lojasiewicz inequality we develop (cf.
(22) in section 4) may help in understanding the global convergence of subgradient
methods.

As we outline above, we use a stratification approach to develop our results. Ioffe
[14] has recently announced an extension of the work described here, leading to a
remarkable and powerful Sard-type result for stratifiable multifunctions (see [15]).

2. Preliminaries. In this section we recall several definitions and results con-
cerning nonsmooth analysis (subgradients, generalized critical points) and stratifica-
tion theory. For nonsmooth analysis we refer to the comprehensive texts [5], [6], [28],
[29], [32].

In what follows the vector space R
n is endowed with its canonical scalar product

〈·, ·〉.
Nonsmooth analysis. Given an extended-real-valued function f : R

n → R ∪
{+∞} we denote its domain by dom f := {x ∈ R

n : f(x) < +∞}, its graph by

Graph f := {(x, f(x)) ∈ R
n×R : x ∈ dom f} ,

and its epigraph by

epi f := {(x, β) ∈ R
n×R : f(x) ≤ β}.

In this work we shall deal with lower semicontinuous functions, that is, functions for
which epi f is a closed subset of R

n×R. In this setting, we say that x∗ ∈ R
n is a

Fréchet subgradient of f at x ∈ dom f provided that

(1) lim inf
y→x,y �=x

f(y) − f(x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0.
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The set of all Fréchet subgradients of f at x is called the Fréchet subdifferential of f
at x and is denoted by ∂̂f(x). If x /∈ dom f , then we set ∂̂f(x) = ∅.

Let us give a geometrical interpretation of the above definition: It is well known
that the gradient of a C1 function f : R

n → R at x ∈ R
n can be defined geometrically

as the vector ∇f(x) ∈ R
n such that (∇f(x),−1) is normal to the tangent space

T(x,f(x))Graph f of (the C1 manifold) Graph f at (x, f(x)), that is,

(∇f(x),−1) ⊥ T(x,f(x))Graph f.

A similar interpretation can be stated for Fréchet subgradients. Let us first define the
(Fréchet) normal cone of a subset C of R

n at x ∈ C by

(2) N̂C(x) =

⎧⎪⎨
⎪⎩v ∈ R

n : lim sup
y→x

y∈C\{x}

〈
v,

y − x

||x− y||

〉
≤ 0

⎫⎪⎬
⎪⎭ .

Then it can be proved (see [32, Theorem 8.9], for example) that for a nonsmooth
function f we have

(3) x∗ ∈ ∂̂f(x) if and only if (x∗,−1) ∈ N̂epi f (x, f(x)).

The Fréchet subdifferential extends the notion of a derivative in the sense that if f is
differentiable at x, then ∂̂f(x) = {∇f(x)}. However, it is not completely satisfactory

in optimization, since ∂̂f(x) might be empty-valued at points of particular interest
(think of the example of the function f(x) = −||x||, at x = 0). Moreover, the Fréchet
subdifferential is not a closed mapping, so it is unstable computationally. For this
reason we also consider (see [28], [32], for example):

(i) the limiting subdifferential ∂f(x) of f at x ∈ dom f :

(4) x∗ ∈ ∂f(x) ⇐⇒ ∃(xn, x
∗
n) ⊂ Graph ∂̂f :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

xn = x,

lim
n→∞

f(xn) = f(x),

lim
n→∞

x∗
n = x∗,

where Graph ∂̂f := {(u, u∗) : u∗ ∈ ∂̂f(u)} ;
(ii) the singular limiting subdifferential ∂∞f(x) of f at x ∈ dom f :

(5)

y∗ ∈ ∂∞f(x) ⇐⇒ ∃(yn, y
∗
n) ⊂ Graph ∂̂f, ∃tn ↘ 0+ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

yn = x,

lim
n→∞

f(yn) = f(x),

lim
n→∞

tny
∗
n = y∗.

When x /∈ dom f we set ∂f(x) = ∂∞f(x) = ∅.
The Clarke subdifferential ∂◦f(x) of f at x ∈ dom f is the central notion of this

work. It can be defined in several (equivalent) ways; see [5]. The definition below
(see [16, Proposition 3.3], [17, Proposition 3.4], or [30, Theorem 8.11]) is the most
convenient for our purposes. (For any subset S of R

n we denote by coS the closed
convex hull of S.)
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Definition 1 (Clarke subdifferential). The Clarke subdifferential ∂◦f(x) of f
at x is the set

(6) ∂◦f(x) =

{
co {∂f(x) + ∂∞f(x)} if x ∈ dom f,

∅ if x /∈ dom f .

Remark 1. The construction (6) does not look very natural at first sight. How-
ever, it can be shown that an analogous to (3) formula holds also for the Clarke
subdifferential, if N̂epi f (x, f(x)) is replaced by the Clarke normal cone, which is the
closed convex hull of the limiting normal cone. The latter cone comes naturally from
the Fréchet normal cone by closing its graph; and see [32, pp. 305 and 336] for details.

From the above definitions it follows directly that for all x ∈ R
n, one has

(7) ∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x).

The elements of the limiting (respectively, Clarke) subdifferential are called limiting
(respectively, Clarke) subgradients.

The notion of a Clarke critical point (respectively, critical value, asymptotic crit-
ical value) is defined as follows.

Definition 2 (Clarke critical point). We say that x ∈ R
n is a Clarke critical

point of the function f if

∂◦f(x) � 0.

Definition 3 ((asymptotic) Clarke critical value). (i) We say that α ∈ R is a
Clarke critical value of f if the level set f−1({α}) contains a Clarke critical point.

(ii) We say that λ ∈ R ∪ {±∞} is an asymptotic Clarke critical value of f , if
there exists a sequence (xn, x

∗
n)n≥1 ⊂ Graph ∂◦f such that{

f(xn) → λ

(1 + ||xn||) ||x∗
n|| → 0.

Let us make some observations concerning the above definitions.
Remark 2. (i) Both limiting and Clarke subgradients are generalizations of the

usual gradient of smooth functions: Indeed, if f is C1 around x (or more generally,
strictly differentiable at x [32, Definition 9.17]), then we have

∂◦f(x) = ∂f(x) = {∇f(x)}.

It should be noted that if f is only Fréchet differentiable at x, then ∂◦f(x) ⊃ ∂f(x) ⊃
{∇f(x)}, where the inclusions might be strict.

(ii) The singular limiting subdifferential should not be thought as a set of sub-
gradients. Roughly speaking it is designed to detect “horizontal normals” to the
epigraph of f . For instance, for the (nonsmooth) function f(x) = x

1
3 (x ∈ R) we

have ∂∞f(0) = R+. Note that, since the domain of the Fréchet subdifferential is
dense in dom f , we always have ∂∞f(x) � 0 for all x ∈ dom f (see also [32, Corollary
8.10]); therefore, this latter relation cannot be regarded as a meaningful definition of
a critical point.

(iii) To illustrate the definition of the Clarke critical point (Definition 1), let us
consider the example of the function f : R → R defined by

f(x) =

{
x if x ≤ 0,

−
√
x if x > 0.
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Then ∂̂f(0) = ∅ and ∂f(0) = {1}. However, since ∂∞f(0) = R−, it follows from (6)
that ∂◦f(0) = (−∞, 1], so x = 0 is a Clarke critical point.

(iv) It follows from Definition 3 that every Clarke critical value α ∈ R is also
an asymptotic Clarke critical value (indeed, given x0 ∈ f−1({α}) with 0 ∈ ∂◦f(x0),
it is sufficient to take xn := x0 and x∗

n = 0). Note that in the case that f has a
bounded domain dom f , Definition 3(ii) can be simplified in the following way: The
value λ ∈ R ∪ {±∞} is asymptotically critical if and only if there exists a sequence
(xn, x

∗
n)n≥1 ⊂ Graph ∂◦f such that f(xn) → λ and x∗

n → 0.
Stratification results. By the term stratification we mean a locally finite parti-

tion of a given set into differentiable manifolds, which, roughly speaking, fit together
in a regular manner. Let us give a formal definition of a Cp stratification of a set.
For general facts about stratifications we quote [27]; more specific results concerning
tame geometry can be found in [34], [11], [18], [10], [21].

Let X be a nonempty subset of R
n and p a positive integer. A Cp stratification

X = (Xi)i∈I of X is a locally finite partition of X into Cp submanifolds Xi of R
n

such that for each i �= j

Xi ∩Xj �= ∅ =⇒ Xj ⊂ Xi \Xi.

The submanifolds Xi are called strata of X . Furthermore, given a finite collection
{A1, . . . , Aq} of subsets of X, a stratification X =(Xi)i∈I is said to be compatible with
the collection {A1, . . . , Aq} if each Ai is a locally finite union of strata Xj .

In this work we shall use a special type of stratification (called a Whitney strat-
ification) for which the strata are such that their tangent spaces also “fit regularly.”
To give a precise meaning to this statement, let us first define the distance (or gap)
of two vector subspaces V and W of R

n by the following standard formula:

D(V,W ) = max

{
sup

v∈V, ||v||=1

d(v,W ), sup
w∈W, ||w||=1

d(w, V )

}
.

Note that

sup
v∈V, ||v||=1

d(v,W ) = 0 ⇐⇒ V ⊂ W.

Further we say that a sequence {Vk}k∈N of subspaces of R
n converges to the subspace

V of R
n (in short, V = lim

k→+∞
Vk) provided

lim
k→+∞

D(Vk, V ) = 0.

Notice that in this case the subspaces Vk will eventually have the same dimension
(say, d); thus, the above convergence is essentially equivalent to the convergence in
the Grassmannian manifold Gn

d .
A Cp stratification X = (Xi)i∈I of X has the Whitney-(a) property, if for each

x ∈ Xi ∩Xj (with i �= j) and for each sequence {xk} ⊂ Xi we have

lim
k→∞

xk = x

and
lim
k→∞

Txk
Xi = T ,

⎫⎪⎬
⎪⎭ =⇒ TxXj ⊂ T ,

where TxXj (respectively, Txk
Xi) denotes the tangent space of the manifold Xj at x

(respectively, of Xi at xk). In what follows we shall use the term Whitney stratification
to refer to a C1 stratification with the Whitney-(a) property.
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3. Projection formulas for subgradients. In this section we make precise
the links between the Clarke subgradients of a lower semicontinuous function whose
graph admits a Whitney stratification and the gradients of f (with respect to the
strata). As a corollary we obtain a nonsmooth extension of the Morse–Sard theorem
for such functions (see Corollary 5).

Let f : R
n → R ∪ {+∞} be a lower semicontinuous function. We shall deal with

nonvertical Whitney stratifications S = (Si)i∈I of the graph Graph f of f , that is,
Whitney stratifications satisfying for all i ∈ I and u ∈ Si the transversality condition

en+1 /∈ TuSi (H),

where

en+1 = (0, . . . , 0, 1) ∈ R
n+1.

Remark 3. If f is locally Lipschitz continuous, then it is easy to check that
any stratification of Graph f is nonvertical. This might also happen for other func-
tions (think of the nonlocally Lipschitz function f(x) =

√
|x|: Every stratification

of Graph f should contain the stratum S0 = {(0, 0)}). However, the example of the
function f(x) = x1/3 shows that this is not the case for any (continuous stratifi-
able) function f and any stratification of its graph (consider the trivial stratification
consisting of the single stratum S = Graph f and take u = (0, 0)).

Let us denote by Π : R
n+1 → R

n the canonical projection on R
n, that is,

Π(x1, . . . , xn, t) = (x1, . . . , xn).

For each i ∈ I we set

(8) Xi = Π(Si) and fi = f |Xi .

Due to the assumption (H) (nonverticality) one has that for all i ∈ I:
(i) Xi is a C1 submanifold of R

n, and
(ii) fi : Xi → R is a C1 function.

If, in addition, the function f is continuous, then it can be easily seen that:
(iii) X = (Xi)i∈I is a Whitney stratification of dom f = Π(Graph f).
Notation. In what follows, for any x ∈ dom f, we shall denote by Xx (respec-

tively, Sx) the stratum of X (respectively, of S) containing x (respectively, (x, f(x))).
The manifolds Xi are here endowed with the metric induced by the canonical Eu-
clidean scalar product of R

n. Using the inherited Riemannian structure of each stra-
tum Xi of X for any x ∈ Xi, we denote by ∇Rf(x) the gradient of fi at x with respect
to the stratum Xi, 〈·, ·〉.

Proposition 4 (projection formula). Let f : R
n → R ∪ {+∞} be a lower semi-

continuous function, and assume that Graph f admits a nonvertical Whitney stratifi-
cation S = (Si)i∈I . Then for all x ∈ dom f we have

(9) Proj TxXx
∂f(x) ⊂ {∇Rf(x)}, Proj TxXx

∂∞f(x) = {0},

and

(10) Proj TxXx
∂◦f(x) ⊂ {∇Rf(x)},

where Proj V : R
n → V denotes the orthogonal projection on the vector subspace V of

R
n.
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Proof. We shall use the above notation (and in particular the notation of (8)).

Let us first describe the links between the Fréchet subdifferential ∂̂f(x) and the
gradient of f |Xx at a point x ∈ dom f . For any v ∈ TxXx and any continuously
differentiable curve c : (−ε, ε) → Xx (ε > 0) with c(0) = x and ċ(0) = v, the function

f ◦ c (:= fi ◦ c) : (−ε, ε) → R

is continuously differentiable. In view of [32, Theorem 10.6, p. 427], we have

{
〈x∗, v〉 : x∗ ∈ ∂̂f(x)

}
⊂

{
d

dt
f(c(t)) |t=0

}
.

Since d
dtf(c(t))|t=0 = 〈∇Rf(x), v〉 it follows that

(11) Proj TxXx
∂̂f(x) ⊂ {∇Rf(x)}.

In a second stage we prove successively that

(12) Proj TxXx
∂f(x) ⊂ {∇Rf(x)} and Proj TxXx

∂∞f(x) ⊂ {0}.

To this end, take p ∈ ∂f(x), and let {xk} ⊂ dom ∂̂f , x∗
k ∈ ∂̂f(xk) be such that

(xk, f(xk)) → (x, f(x)) and x∗
k → p. Due to the local finiteness property of S, we

may suppose that the sequence {uk := (xk, f(xk))} lies entirely in some stratum Si

of dimension d.
If Si = Sx, then by (11) we deduce that Proj TxXx

(x∗
k) = ∇Rf(xk); thus, using

the continuity of the projection and the fact that f |Xx
is C1 (so ∇Rf(xk) → ∇Rf(x)),

we obtain Proj TxXx
(p) = ∇Rf(x).

If Si �= Sx, then from the convergence (xk, f(xk)) → (x, f(x)) we deduce that
Si ∩Sx �= ∅ (thus d = dimSi > dimSx). Using the compactness of the Grassmannian
manifold Gn

d , we may assume that the sequence {Tuk
Si} converges to some vector

space T of dimension d. Then the Whitney-(a) property yields that T ⊃ T(x,f(x))Sx.
Recalling (3), for each k ≥ 1 we have that the vector (x∗

k,−1) is Fréchet normal to
the epigraph epi f of f at uk; hence, it is also normal (in the classical sense) to the
tangent space Tuk

Si. By a standard continuity argument the vector

(p,−1) = lim
k→∞

(x∗
k,−1)

must be normal to T and a fortiori to T(x,f(x))Sx. By projecting (p,−1) orthogonally
on TxXx + R en+1 ⊃ T(x,f(x))Sx, we notice that (Proj TxXx

(p),−1) is still normal to
T(x,f(x))Sx. We conclude that

(13) Proj TxXx
(p) = ∇Rf(x);

thus, the first part of (12) follows.

Let now any q ∈ ∂∞f(x). By definition there exist {yk} ⊂ dom ∂̂f , y∗k ∈ ∂̂f(yk),
and a positive sequence tk ↘ 0+ such that (yk, f(yk)) → (y, f(y)) and tky

∗
k → q. As

above we may assume that the sequence {yk} belongs to some stratum Si and that the
tangent spaces Tuk

Si = T(xk,f(xk))Si converge to some T . Since tk(y
∗
k,−1) is normal

to Tuk
Si we can similarly deduce that (Proj TxXx

(q), 0) is normal to T(x,f(x))Sx. Since
Proj Rn×{0}T(x,f(x))Sx = TxXx this implies that ∂∞f(x) ⊂ (TxXx)

⊥
, and the second

part of (12) is proved. It now follows from (12) and Remark 2(ii) that (9) holds.
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In order to conclude let us recall (Definition 1) that ∂◦f(x) = co (∂f(x)+∂∞f(x)).
In view of (12) any element of co (∂f(x) + ∂∞f(x)) admits ∇Rf(x) as a projection
onto TxXx. By taking the closure of the previous set we obtain (10).

Remark 4. The inclusion in (10) may be strict (think of the function f(x) =
−||x||1/2 at x = 0, where ∂◦f(0) = ∅). Of course, whenever ∂◦f(x) is nonempty (for
example, if f is locally Lipschitz), under the assumptions of Proposition 4 we have

Proj TxXx
∂◦f(x) = {∇Rf(x)}.

Corollary 5. Assume that f is lower semicontinuous and admits a nonvertical
Cp-Whitney stratification. Then:

(i) for all x ∈ dom ∂◦f we have

(14) ||∇Rf(x)|| ≤ ||x∗|| for all x∗ ∈ ∂◦f(x).

(ii) (Morse–Sard theorem) If p ≥ n, then the set of Clarke critical values of f
has Lebesgue measure zero.

Proof. Assertion (i) is a direct consequence of (10) of Proposition 4. To prove
(ii), set C := [∂◦f ]−1({0}) = {x ∈ R

n : ∂◦f(x) � 0}. Since the set of strata is at most
countable, the restrictions of f to each of those yield a countable family {fn}n∈N of
Cp functions. In view of (14), we have that C ⊂ ∪n∈N(∇fn)−1(0). The result follows
by applying to each Cp-function fn the classical Morse–Sard theorem [33].

As we see in the next section, several important classes of lower semicontinuous
functions satisfy the assumptions (thus also the conclusions) of Proposition 4 and of
Corollary 5.

4. Kurdyka–�Lojasiewicz inequalities for o-minimal functions. Let us re-
call briefly a few definitions concerning o-minimal structures (see, for instance, Coste
[7], van den Dries and Miller [11], Ta Lê Loi [35], and references therein).

Definition 6 (o-minimal structure). An o-minimal structure on (R,+, .) is a
sequence of Boolean algebras On of “definable” subsets of R

n such that for each n ∈ N:
(i) if A belongs to On, then A× R and R ×A belong to On+1;
(ii) if Π : R

n+1 → R
n is the canonical projection onto R

n, then for any A in On+1

the set Π(A) belongs to On;
(iii) On contains the family of algebraic subsets of R

n, that is, every set of the
form

{x ∈ R
n : p(x) = 0},

where p : R
n → R is a polynomial function;

(iv) the elements of O1 are exactly the finite unions of intervals and points.
Definition 7 (definable function). Given an o-minimal structure O (over (R,+, .)),

a function f : R
n → R ∪ {+∞} is said to be definable in O if its graph belongs to

On+1.
Remark 5 (examples). At first sight, o-minimal structures might appear artificial

in optimization. The following fundamental properties (see [11] for the details) might
convince the reader that this is not the case.

(i) (Tarski–Seidenberg) The collection of semialgebraic sets is an o-minimal struc-
ture. Recall that semialgebraic sets are Boolean combinations of sets of the form

{x ∈ R
n : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},

where p and qi’s are polynomial functions on R
n .
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(ii) (Gabrielov) There exists an o-minimal structure that contains the sets of the
form

{(x, t) ∈ [−1, 1]n × R : f(x) = t},

where f : R
n → R is real analytic around [−1, 1]n.

(iii) (Wilkie) There exists an o-minimal structure that contains simultaneously
the graph of the exponential function R � x �→ expx and all semialgebraic sets
(respectively, all sets of the structure defined in (ii)).

We insist on the fact that these results are crucial foundation blocks on which
o-minimal geometry rests.

Let us finally recall the following elementary but important result: The com-
position of mappings that are definable in some o-minimal structure remains in the
same structure [11, section 2.1]. This is also true for the sum, the inf-convolution,
and several other classical operations of analysis involving a finite number of defin-
able objects. Another prominent fact about definable sets is that they admit, for
each k ≥ 1, a Ck–Whitney stratification with finitely many strata (see, for instance,
[11, Result 4.8, p. 510]). This remarkable stability, combined with new techniques
of finite-dimensional optimization, offers a large field of investigation. Several works
have already been developed in this spirit; see, for instance, [1], [3], [12].

Given any o-minimal structure O and any lower semicontinuous definable function
f : R

n → R ∪ {+∞}, the assumptions of Proposition 4 are satisfied. More precisely,
we have the following result.

Lemma 8. Let O be an o-minimal structure, B := {B1, . . . , Bq} be a collection of
definable subsets of R

n, and f : R
n → R∪{+∞} be a definable lower semicontinuous

function. Then for any p ≥ 1, there exists a nonvertical definable Cp-Whitney strati-
fication {S1, . . . , S�} of Graph f yielding (by projecting each stratum Si ⊂ R

n+1 onto
R

n) a Cp-Whitney stratification {X1, . . . , X�} of dom f compatible with B.
Proof. By transforming, using diffeomorphisms preserving verticality, R

n to D :=
{x ∈ R

n : ||x|| < 1} and R to (−1, 1), we may assume without loss of generality that
f is defined in D := {x ∈ R

n : ||x|| < 1} with values in (−1, 1). Set X = Graph f
and Ai = Bi × (−1, 1) for i ∈ {1, . . . , q}, and let π : X → D denote the restriction to
Graph f of the canonical projection of D× (−1, 1) to D. The lemma follows from the
canonical stratification of the mapping π according to [34, II.1.17].

Corollary 9 (Morse–Sard theorem for definable functions). Let f : R
n →

R∪{+∞} be a lower semicontinuous definable function and p ≥ 1. Then there exists
a finite definable Cp-Whitney stratification X = (Xi)i∈I of dom f such that for all
x ∈ dom f

(15) Proj TxXx
∂◦f(x) ⊂ {∇Rf(x) } .

As a consequence:
(i) for all x ∈ dom ∂◦f and x∗ ∈ ∂◦f(x), we have ||∇Rf(x)|| ≤ ||x∗||;
(ii) the set of Clarke critical values of f is finite;
(iii) the set of asymptotic Clarke critical values of f is finite.
Proof. Assertion (i) is a direct consequence of (15). This projection formula

follows directly by combining Lemma 8 with Proposition 4. To prove (iii), let fi be
the restriction of f to the stratum Xi. Then assertion (i), together with the fact that
the number of strata is finite, implies that the set of the asymptotic Clarke critical
values of f is the union (over the finite set I) of the asymptotic critical values of
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each (definable C1) function fi. Thus the result follows from [8, Remarque 3.1.5].
Assertion (ii) follows directly from (iii) (cf. Remark 2(iii)).

Remark 6. The fact that the set of the asymptotic critical values of a definable
differentiable function f is finite has been established in [8, Théorème 3.1.4] (see also
[20, Theorem 3.1] for the case that the domain of f is bounded). In [22, Proposition 2]
a more general result (concerning functions taking values in R

k) has been established
in the semialgebraic case.

We shall now give another application of Proposition 4, namely, a nonsmooth
version of the classical Kurdyka–�Lojasiewicz inequality ([20, Theorem 1]). Before we
proceed, we shall improve the latter in a way that allows us to deal directly with
unbounded domains. To this end, we shall need the following proposition.

Proposition 10 (uniform boundedness). Let I = [a,+∞) for some a ∈ R,
and let V be a definable neighborhood of {0} × I in R+ × I and φ : V → R+ a
definable function, continuous throughout {0}× I, satisfying φ(0, s) = 0 for all s ∈ I.
Then there exist ε0 > 0 and continuous definable functions χ : I → (0, ε0) and
ψ : (0, ε0) → [0,+∞) such that ψ is C1 on (0, ε0), ψ(0) = 0, and

ψ(t) ≥ φ(t, s) for all s ∈ I, t ∈ (0, χ(s)).

Proof. We can clearly assume that a = 0. Since V is a definable neighborhood of
{0} × I, we may assume there exists a continuous definable function g : I → (0,+∞)
such that {(t, s) ∈ R+ × I : t ≤ g(s)} ⊂ V. Set

(16) δ(s) := sup

{
δ ∈ (0, g(s)) : φ(t, s) ≤ 1

s + 1
∀t ∈ [0, δ)

}
,

and note that δ(s), being definable, has a finite number of points of discontinuity.
Since φ is continuous on {0}×I and φ(0, s) = 0 for all s ∈ I, we infer that lim inf

s→s̄
δ(s) >

0 for all s̄ ∈ I. We deduce that there exists a continuous decreasing and definable
function χ : I → (0,+∞) satisfying χ(s) ≤ δ(s) for all s ∈ I. Set ε0 = sup χ(I) =
χ(0) > 0, and consider the definable function

ψ(t) = max
s∈[0,χ−1(t)]

φ(t, s) for all t ∈ [0, ε0).

By the monotonicity lemma [7, Theorem 2.1] we conclude that ψ is C1 on (0, β) for
some β ≤ ε0. Truncating χ if necessary (by defining χ̃(s) := min{β, χ(s)}), we see
that there is no loss of generality to assume β = ε0. Note that ψ(0) = 0. Let us show
that ψ is also continuous at t = 0. Let us assume, towards a contradiction, that there
exists a sequence tn ↘ 0+ satisfying ψ(tn) > c > 0. Then for every n ∈ N there exists
sn ∈ [0, χ−1(tn)] such that φ(tn, sn) > c > 0. If {sn} → +∞, then since δ(sn) ≥ χ(sn)
we would deduce from (16) that (sn + 1)−1 ≥ φ(tn, sn) > c, which is impossible
for large values of n. Thus {sn} is bounded and has a convergent subsequence to
some s ∈ I. Using the continuity of φ at (0, s) and the fact that φ(0, s) = 0, the
contradiction follows. One can easily check that the definable functions ψ and χ
satisfy the conclusion of the proposition.

We now provide the following extension of the Kurdyka–�Lojasiewicz inequality
([20, Theorem 1]) for unbounded sets in the smooth case.
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Theorem 11 (Kurdyka–�Lojasiewicz inequality). Let U be a nonempty definable
submanifold of R

n (not necessarily bounded) and f : U → R+ be a definable differen-
tiable function. Then there exist a continuous definable function ψ : [0, ε0) → R+

satisfying ψ(0) = 0 and being C1 on (0, ε0) and a continuous definable function
χ : R+ → (0, ε0) such that

(17) ||∇(ψ ◦ f)(x)|| ≥ 1 for all 0 < f(x) ≤ χ(||x||).

Proof. With no loss of generality we can assume that f is not identically equal to
0 on U .

For each (t, s) ∈ (0,+∞) × R+ we set
(18)
F (t, s) := f−1(t) ∩B(0, s) ⊂ U and mf (t, s) = inf {||∇f(x)|| : x ∈ F (t, s)}.

Note that mf (t, s) ≡ +∞ whenever F (t, s) is empty. If f−1(0) = ∅, then for every
s ≥ 0 there exists δ > 0 such that for all t ∈ (0, δ) we have F (t, s) = ∅. Thus, the
definable function

s �→ δ(s) := sup{δ > 0 : F (t, s) = ∅ ∀t ∈ (0, δ]} < +∞

is positive (cf. continuity of f), decreasing (since F (t, s1) ⊂ F (t, s2) for s1 ≤ s2), and
continuous on (s̄,+∞) for some s̄ > 0 (cf. monotonicity lemma [7, Theorem 2.1]). In
this case (17) follows trivially by considering the continuous function

χ(s) =

{
δ(s)/2 if s ≥ s̄,
δ(s̄)/2 if s ≤ s̄,

and any continuous definable function ψ.
Thus there is no loss of generality to assume that there exists s0 ≥ 0 and a

decreasing continuous definable function ρ : [s0,+∞) → (0,+∞) such that F (t, s) �= ∅
for all t ∈ [0, ρ(s)] and all s ≥ s0. It follows that for all s ≥ s0 and t ∈ [0, ρ(s)] we
have mf (t, s) ∈ R+ and (since arg min f = {0}) mf (0, s) = 0. Using an argument
of Kurdyka ([20, Claim, p. 777]) we deduce that the function t �→ mf (t, s) is not
identically 0 near the origin, and we set for all s ≥ s0

g(s) = sup { t0 ∈ (0, ρ(s)) : mf (t, s) > 0 ∀t ∈ (0, t0] } ∈ (0,+∞).

Then g is decreasing, positive, definable, and thus continuous on [s1,+∞) for some
s1 ≥ s0. Set D = {(t, s) ∈ R+ × [s1,+∞) : t ≤ g(s)}, and consider the following
definable point-to-set mapping M : D ⇒ U ⊂ R

n, with

M(t, s) := {x ∈ F (t, s) : ||∇f(x)|| ≤ 2 mf (t, s)}.

Using the definable selection lemma (cf. [7, Theorem 3.1]), we obtain a definable
mapping γ : D → R

n such that γ(t, s) ∈ M(t, s) for all (t, s) ∈ D. Note that for
each s fixed, the function (0, g(s)) � t �→ γ(t, s) is absolutely continuous and ∂

∂tγi(·, s)
changes sign only a finite number of times on D for all i ∈ {1, . . . , n}. We set

φ(t, s) =

∫ t

0

max
i∈{1,...,n}

∣∣∣∣ ∂∂tγi(τ, s)
∣∣∣∣ dτ

for all (t, s) ∈ D. Applying the monotonicity lemma we obtain the integrability of the
function

τ �→ max
i=1,...,n

∣∣∣∣ ∂∂tγi(τ, s)
∣∣∣∣ .
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Using routine arguments it is easily seen that φ is actually definable on D. Moreover,
φ(t, s) > 0 whenever t > 0 (else the curve γ(·, s) would be stationary, which is not
possible since f(γ(t, s)) = t). Note also that φ(0, s) = 0 and limt↘0+ φ(t, s) = 0.
Considering a stratification of φ we deduce that there exists a ≥ s1 and a definable
neighborhood V of {0} × [a,+∞) in D where φ is (jointly) continuous. Applying
Proposition 10, we obtain ε0 > 0, a continuous definable function χ : [a,+∞) →
(0, ε0), and a continuous definable function ψ : [0, ε0) → R, with ψ(0) = 0, such that
ψ is C1 on (0, ε0) and ψ(t) ≥ φ(t, s) for all t ∈ [0, χ(s)].

Fix s ≥ a. Since ψ(t) ≥ φ(t, s) for t ∈ [0, χ(s)] and ψ(0) = φ(0, s), it follows (see
[2, Lemma 1(i)], for example) that for all t > 0 sufficiently small

(19) ψ′(t) ≥ ∂

∂t
φ(t, s) > 0.

For each s ∈ [a,+∞) let us define ε(s) to be the supremum of all ε ∈ (0, ε0) such that
(19) holds true in the interval (0, ε). It follows that s �→ ε(s) is a positive definable
function and is thus continuous on [b,+∞) for some b ≥ a. Let us define

χ̃(s) =

{
min{χ(s), ε(s)} if s ≥ b,

min{χ(b), ε(b)} if s ∈ [0, b].

We shall now show that (17) holds for ψ̃ = ( 1
2
√
n
)ψ and for χ̃ : R+ → (0, ε0). Indeed,

let x ∈ U be such that 0 < f(x) ≤ χ̃(||x||) (hence ∇f(x) �= 0). Set t = f(x) and
s = max{||x||, b}. Using the definition of γ we obtain

(20) ||∇(ψ ◦ f)(x)|| = ψ′(t)||∇f(x)|| ≥ 1

2
ψ′(t)||∇f(γ(t, s))||.

On the other hand, since f(γ(t, s)) = t, we have

d

dt
f(γ(t, s)) =

〈
∂

∂t
γ(t, s),∇f(γ(t, s))

〉
= 1

for all (t, s) ∈ D; hence

√
n max

i=1,...,n

∣∣∣∣ ∂∂tγi(·, s)
∣∣∣∣ ||∇f(γ(t, s)|| ≥

∥∥∥∥ ∂

∂t
γ(t, s)

∥∥∥∥ ||∇f(γ(t, s)|| ≥ 1,

and thus

(21) ||∇f(γ(t, s))|| ≥
[√

n max
i=1,...,n

∣∣∣∣ ∂∂tγi(·, s)
∣∣∣∣
]−1

=

[√
n
∂

∂t
φ(t, s)

]−1

.

Since f(x) ≤ χ̃(||x||) ≤ ε(s), by combining (19), (20), and (21) we finally obtain that

||∇(ψ ◦ f)(x)|| ≥ 1

2
√
n
ψ′(t)

[
∂

∂t
φ(t, s)

]−1

≥ 1

2
√
n

;

that is, (17) holds for ψ̃ = ( 1
2
√
n
)−1ψ.

Remark 7. If in the statement of Theorem 11 the definable set U is not open,
then ∇f is understood as the Riemannian gradient of f on U .
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We easily obtain the following corollaries.
Corollary 12. Let f : U → R be a definable differentiable function, where

U is a definable submanifold of R
n (not necessarily bounded). Then there exist a

continuous definable function ψ : [0, ε0) → R+ which is C1 on (0, ε0), with ψ(0) = 0,
and a relatively open neighborhood V of f−1(0) in U such that

||∇(ψ ◦ |f |)(x)|| ≥ 1

for all x in V \ f−1(0).
Proof. Let us first assume that f is nonnegative. The result holds trivially if

f−1(0) = ∅, so let us assume f−1(0) �= ∅. Take ψ and χ as in Theorem 11, and let
x ∈ f−1(0). It suffices to show that the inequality holds on a ball around x. Take
r ∈ (0, ε0) such that χ(||x||) > r. Since χ and f are continuous, there exists δ > 0
such that y ∈ B(x, δ) ∩ U implies χ(||y||) > r > f(y). Applying Theorem 11, we
conclude that for all y ∈ B(x, δ)∩U inequality (17) holds. When f takes its values in
R (not necessarily in R+), the conclusion follows easily by considering the subman-
ifolds {x ∈ U : f(x) > 0}, {x ∈ U : f(x) < 0} and by applying the monotonicity
Lemma.

Corollary 13. Let f : U → R be a definable differentiable function, where U is
a definable submanifold of R

n (not necessarily bounded). Let us denote by C1, . . . , Cm

the connected components of (∇f)−1({0}) and by c1, . . . , cm the corresponding critical
values. Then there exist a continuous definable function ψ : [0, ε0) → R+ which is C1

on (0, ε0), with ψ(0) = 0, and relatively open neighborhoods Vi of Ci in U for each
i ∈ {1, . . . ,m} such that for all x ∈ Vi \ Ci we have

||∇[ψ ◦ |f − ci|](x)|| ≥ 1.

Proof. Note that (∇f)−1({0}) ⊂ ∪m
i=1 f

−1(ci). For each i ∈ {1, . . . ,m} we apply
Corollary 12 to the function fi := f−ci on U to obtain a relatively open neighborhood
Vi of Ci and ψi : [0, εi) → R+ such that for all x ∈ Vi \ f−1(ci)

||∇[ψi ◦ |f − ci|](x)|| ≥ 1.

Set ε0 = min{εi : i ∈ {1, . . . ,m}}. Since ψi are definable functions, shrinking ε0

if necessary, we may assume (cf. the monotonicity lemma) that ψ′
i0

(t) ≥ ψ′
i(t) for

all t ∈ (0, ε0) and all i ∈ {1, . . . ,m}. The conclusion follows by setting ψ := ψi0 on
[0, ε0).

We shall now use Corollary 9 to extend Theorem 11 to a nonsmooth setting.
Theorem 14 (nonsmooth Kurdyka–�Lojasiewicz inequality). Let f : R

n →
R ∪ {+∞} be a lower semicontinuous definable function. There exist ρ > 0, a strictly
increasing continuous definable function ψ : [0, ρ) → (0,+∞) which is C1 on (0, ρ),
with ψ(0) = 0, and a continuous definable function χ : R+ → (0, ρ) such that

(22) ||x∗|| ≥ 1

ψ′(|f(x)|) ,

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
Proof. Set U1 = {x ∈ dom f : f(x) > 0} and U2 = {x ∈ dom f : f(x) < 0},

and let X1, . . . , Xl be a finite definable stratification of dom f compatible with the
(definable) sets U1 and U2 such that the definable sets Si = {(x, f(x)) : x ∈ Xi}
are the strata of a nonvertical definable Cp-Whitney stratification of Graph f (cf.
Lemma 8). For each i ∈ {1, . . . , l} such that Xi ⊂ U1 we consider the positive
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C1 function fi := f |Xi
on the definable manifold Xi (thus for x ∈ Xi we have

∇fi(x) = ∇Rf(x) and fi(x) = f(x)), and we apply Theorem 11 to obtain εi > 0,
a continuous definable function χi : R+ → (0, εi), and a strictly increasing definable
C1-function ψi : (0, εi) → (0,+∞) such that for all x ∈ f−1(0, χi(||x||)) we have
||∇Rf(x)|| ≥ [ψ′

i(f(x))]−1. Similarly, for each j ∈ {1, . . . , l} such that Xj ⊂ U2

we consider the positive C1-function fj := −f |Xi
(note that for x ∈ Xj we have

∇fj(x) = −∇Rf(x) and fj(x) = −f(x)) to obtain as before a definable function χj :
R+ → (0, εj) and a strictly increasing definable C1-function ψj : (0, εj) → (0,+∞)
such that for all x ∈ f−1(0, χi(||x||)) we have ||∇Rf(x)|| ≥ [ψ′

j(−f(x))]−1. Thus for
all i ∈ {1, . . . , l} there exist a definable function χi : R+ → (0, εi) and a strictly
increasing definable C1-function ψi : (0, εi) → R such that

||∇Rf(x)|| ≥ 1

ψ′
i(|f(x)|) for all x ∈ f−1(0, χi(||x||)).

Set χ = minχi, ρ = min εi, and let i1, i2 ∈ {1, . . . , l}. By the monotonicity theorem
for definable functions of one variable (see [20, Lemma 2], for example), the definable
function

(0, ρ) � r �→ 1/ψ′
i1(r) − 1/ψ′

i2(r)

has a constant sign in a neighborhood of 0. Repeating the argument for all couples
i1, i2 and shrinking ρ if necessary, we obtain the existence of a strictly increasing,
positive, definable function ψ = ψi0 on (0, ρ) of class C1 that satisfies 1/ψ′ ≤ 1/ψ′

i on
(0, ρ) for all i ∈ {1, . . . , l}. Evoking Corollary 9(i), we obtain

||x∗|| ≥ ||∇Rf(x)|| ≥ 1

ψ′(|f(x))| ,

whenever x ∈ |f |−1(0, χ(||x||)) and x∗ ∈ ∂◦f(x). Since ψ is definable and bounded
from below, it can be extended continuously to [0, ρ). By eventually adding a constant,
we can also assume ψ(0) = 0.

In a similar way to Corollary 13 we obtain the following result.
Corollary 15. Let f : R

n → R ∪ {+∞} be a lower semicontinuous definable
function. Let us denote by C1, . . . , Cm the connected components of (∂◦f)−1({0}) and
by c1, . . . , cm the corresponding critical values (cf. Corollary 9(ii)). Then there exist a
continuous definable function ψ : [0, ε0) → R+ which is C1 on (0, ε0), with ψ(0) = 0,
and relatively open neighborhoods Vi of Ci in dom f for each i ∈ {1, . . . ,m} such that
for all x ∈ Vi we have

(23) ||x∗|| ≥ 1

ψ′(|f(x) − ci|)
,

whenever 0 < |f(x) − ci| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
The assumption that the function f is definable is important for the validity of

(22). It implies in particular that the connected components of the set of the Clarke
critical points of f lie in the same level set of f (cf. Corollary 9(ii)). Let us present
some examples of C1-functions for which (22) is not true.

Example 1. (i) Consider the function f : R → R, with

f(x) =

{
x2 sin 1

x if x �= 0,
0 if x = 0.
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Then the set S = {x ∈ R : f ′(x) = 0} meets infinitely many level sets around 0.
Consequently, (22) is not fulfilled since the critical value 0 is not isolated. Note also
that f provides an example of a nondefinable function whose graph admits a Whitney
stratification (in particular f satisfies the conclusion of Proposition 4).

(ii) A nontrivial example is proposed in [31, p. 14], where a C∞ “Mexican-hat”
function has been defined. An example of a similar nature has been given in [1] and
will be described below: Let f be defined in polar coordinate on R

2 by

f(r, θ) =

⎧⎨
⎩

exp(− 1
1−r2 ) [1 − 4r4

4r4+(1−r2)4 sin(θ − 1
1−r2 )] if r ≤ 1,

0 if r > 1.

The function f does not satisfy the Kurdyka–�Lojasiewicz inequality for the critical
value 0; i.e., one cannot find a strictly increasing C1-function ψ : (0, ρ) → (0,+∞),
with ρ > 0, such that

||∇(ψ ◦ f)(x)|| ≥ 1

for small positive values of f(x). To see this, let us notice that the proof of [20,
Theorem 2] shows that for any C1-function f (not necessarily definable) that satisfies
the Kurdyka–�Lojasiewicz inequality, the bounded trajectories of the gradient system

ẋ(t) + ∇f(x(t)) = 0

have a bounded length. However, in the present example, taking as the initial
condition r0 ∈ (0, 1) and θ0 such that θ0(1 − r0)

2 = 1, the gradient trajectory
ẋ(t) = −∇f(x(t)) must comply with

θ(t) =
1

1 − r(t)2
,

where r(t) ↗ 1− as t → +∞ (see [1] for details). The total length of the above curve
is obviously infinite, which shows that the Kurdyka–�Lojasiewicz inequality (for the
critical value 0) does not hold.

Let us finally give an easy consequence of Theorem 14 for the case of subanalytic
functions [25].

Corollary 16 (subgradient inequality). Assume that f : R
n → R ∪ {+∞} is a

lower semicontinuous globally subanalytic function and f(x0) = 0. There exist ρ > 0
and a continuous definable function χ : R+ → (0,+∞) such that

|f(x)|θ ≤ ρ ||x∗||,

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
Proof. In the case that f is globally subanalytic, one can apply [20, Theorem LI]

to deduce that the continuous function ψ of Theorem 14 can be taken of the form
ψ(s) = s1−θ, with θ ∈ (0, 1).

Remark 8. Corollary 9(ii) (and a fortiori Corollary 16) extends [3, Theorem 7]
to the lower semicontinuous case. We also remark that the conclusions of Theorem
14 and of Corollary 16 remain valid for any notion of subdifferential that is included
in the Clarke subdifferential and thus, in particular, in view of (7), for the Fréchet
and the limiting subdifferential. However, let us point out that this is not the case
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for broader notions of subdifferentials, as, for example, the convex-stable subdifferen-
tial introduced and studied in [4]. It is known that the convex-stable subdifferential
coincides with the Clarke subdifferential whenever the function f is locally Lipschitz
continuous, but it is strictly larger in general, creating more critical points. In partic-
ular, [3, section 4] constructs an example of a subanalytic continuous function on R

3

that is strictly increasing in a segment lying in the set of its broadly critical points
(that is, critical in the sense of the convex-stable subdifferential). Consequently, The-
orem 14 and Corollary 16 do not hold for this subdifferential.
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